Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma

Andrius Januskevicius, Reinoud Gosens, Raimundas Sakalauskas, Simona Vaitkiene, Ieva Janulaityte, Andrew J Halayko, Deimante Hoppenot, Kestutis Malakauskas, Andrius Januskevicius, Reinoud Gosens, Raimundas Sakalauskas, Simona Vaitkiene, Ieva Janulaityte, Andrew J Halayko, Deimante Hoppenot, Kestutis Malakauskas

Abstract

Background: Airway smooth muscle (ASM) remodeling is an important component of the structural changes to airways seen in asthma. Eosinophils are the prominent inflammatory cells in asthma, and there is some evidence that they contribute to ASM remodeling via released mediators and direct contact through integrin-ligand interactions. Eosinophils express several types of outer membrane integrin, which are responsible for cell-cell and cell-extracellular matrix interactions. In our previous study we demonstrated that asthmatic eosinophils show increased adhesion to ASM cells and it may be important factor contributing to ASM remodeling in asthma. According to these findings, in the present study we investigated the effects of suppression of eosinophil integrin on eosinophil-induced ASM remodeling in asthma. Materials and Methods: Individual combined cell cultures of immortalized human ASM cells and eosinophils from peripheral blood of 22 asthmatic patients and 17 healthy controls were prepared. Eosinophil adhesion was evaluated using eosinophil peroxidase activity assay. Genes expression levels in ASM cells and eosinophils were measured using quantitative real-time PCR. ASM cell proliferation was measured using alamarBlue® solution. Eosinophil integrins were blocked by incubating with Arg-Gly-Asp-Ser peptide. Results: Eosinophils from the asthma group showed increased outer membrane α4β1 and αMβ2 integrin expression, increased adhesion to ASM cells, and overexpression of TGF-β1 compared with eosinophils from the healthy control group. Blockade of eosinophil RGD-binding integrins by Arg-Gly-Asp-Ser peptide significantly reduced adhesion of eosinophils to ASM cells in both groups. Integrin-blocking decreased the effects of eosinophils on TGF-β1, WNT-5a, and extracellular matrix protein gene expression in ASM cells and ASM cell proliferation in both groups. These effects were more pronounced in the asthma group compared with the control group. Conclusion: Suppression of eosinophil-ASM interaction via RGD-binding integrins attenuates eosinophil-induced ASM remodeling in asthma. Trial Registration: ClinicalTrials.gov Identifier: NCT02648074.

Keywords: TGF-β1; adhesion; airway smooth muscle; asthma; eosinophils; integrins.

Figures

Figure 1
Figure 1
Gene expression of eosinophil integrin. (A) Integrin gene expression differences between eosinophils isolated from asthmatic patients compared with eosinophils from the healthy control group. (B) Influence of a 24-h incubation with airway smooth muscle (ASM) cells on gene expression of eosinophil integrin. Results are mean ± SEM. Asthma group n = 22; control group n = 17. *p < 0.05 compared with healthy eosinophils; #p < 0.05 compared with control group (eosinophils that had not been incubated with ASM cells).
Figure 2
Figure 2
Measurement of eosinophil adhesion. (A) Calibration curve of eosinophil peroxidase (EPO) substrate oxidation dependency by eosinophil count. (B) Eosinophil integrin-suppression efficiency at different Arg-Gly-Asp-Ser (RGDS)/Gly-Arg-Ala-Asp-Ser-Pro (GRADSP) concentrations. (C) Effects of blocking integrin adhesion to airway smooth muscle (ASM) cells in the control group (healthy participants) at various periods of incubation. (D) Effects of blocking integrin adhesion to ASM cells in the asthma group at various periods of incubation. Results are mean ± SEM. Asthma group n = 22; control group n = 17. Control: ASM cells that had not been co-cultured with eosinophils; #p < 0.05 compared with eosinophils that had not been subject to integrin-blocking. Integrin-blocking: 1-h incubation with RGDS/GRADSP in a 0.125 mg/mL final concentration.
Figure 3
Figure 3
Production of transforming growth factor-β1 (TGF-β1). (A) TGF-β1 gene expression differences between eosinophils isolated from asthmatic patients compared with eosinophils from the healthy control group. (B) Changes in TGF-β1 gene expression in ASM cells after exposure to either eosinophils that had or had not been subject to integrin-blocking. (C) Protein levels of free TGF-β1 in growth medium of eosinophil and ASM cell co-cultures. Results are mean ± SEM. Asthma group n = 22; control group n = 17. #p < 0.05 compared with eosinophils that had not been subject to integrin-blocking; *p < 0.05 compared with eosinophils from the control group. Control, ASM cells that had not been co-cultured with eosinophils; EOS control, non-treated eosinophils; integrin-blocking, 1-h incubation with Arg-Gly-Asp-Ser (RGDS)/Gly-Arg-Ala-Asp-Ser-Pro (GRADSP) in a 0.125 mg/mL final concentration.
Figure 4
Figure 4
Eosinophil cationic protein concentration in co-culture growth medium. Results are mean ± SEM. Asthma group n = 22; control group n = 17. Negative control, ASM cells that had not been subject to co-culture with eosinophils; EOS control, non-treated eosinophils; integrin-blocking, 1-h incubation with RGDS/GRADSP in a 0.125 mg/mL final concentration.
Figure 5
Figure 5
Effect of eosinophil integrin-blocking on WNT-5a and extracellular matrix protein production in airway smooth muscle (ASM) cells. (A) Influence of eosinophil integrin suppression on WNT-5a gene expression in ASM cells. (B) Influence of eosinophil integrin suppression on fibronectin gene expression in ASM cells. (C) Influence of eosinophil integrin suppression on collagen gene expression in ASM cells. Results are mean ± SEM. Asthma group n = 22; control group n = 17. Negative control, ASM cells that had not been subject to co-culture with eosinophils; EOS control, non-treated eosinophils: 1-h incubation with Arg-Gly-Asp-Ser (RGDS)/Gly-Arg-Ala-Asp-Ser-Pro (GRADSP) in a 0.125 mg/mL final concentration. Statistical significance, p < 0.05.
Figure 6
Figure 6
Airway smooth muscle (ASM) cell proliferation after incubation with eosinophils. Results are mean ± SEM. Asthma group n = 22; control group n = 17. Control, ASM cells that had not been subject to co-culture with eosinophils; integrin-blocking, 1-h incubation with Arg-Gly-Asp-Ser (RGDS)/Gly-Arg-Ala-Asp-Ser-Pro (GRADSP) in a 0.125 mg/mL final concentration. Statistical significance, p < 0.05.

References

    1. Ahmadzai M., Small M., Sehmi R., Gauvreau G., Janssen L. J. (2015). integrins are mechanosensors that modulate human eosinophil activation. Front. Immunol. 6:525. 10.3389/fimmu.2015.00525
    1. Araujo B. B., Dolhnikoff M., Silva L. F., Elliot J., Lindeman J., Ferreira D., et al. . (2008). Extracellular matrix components and regulators in the airway smooth muscle in asthma. Eur. Respir. J. 32, 61–69. 10.1183/09031936.00147807
    1. Barthel S. R., Annis D. S., Mosher D. F., Johansson M. W. (2006a). Differential engagement of modules 1 and 4 of vascular cell adhesion molecule-1 (CD106) by integrins α4β1 (CD49d/29) and αMβ2 (CD11b/18) of eosinophils. J. Biol. Chem. 281, 32175–32187. 10.1074/jbc.M600943200
    1. Barthel S. R., Jarjour N. N., Mosher D. F., Johansson M. W. (2006b). Dissection of the hyperadhesive phenotype of airway eosinophils in asthma. Am. J. Respir. Cell Mol. Biol. 35, 378–386. 10.1165/rcmb.2006-0027OC
    1. Barthel S. R., Johansson M. W., McNamee D. M., Mosher D. F. (2008). Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma. J. Leukoc. Biol. 83, 1–12. 10.1189/jlb.0607344
    1. Blanchard C., Rothenberg M. E. (2009). Biology of the eosinophil. Adv. Immunol. 101, 81–121. 10.1016/S0065-2776(08)01003-1
    1. Bousquet J., Chanez P., Lacoste J. Y., Barnéon G., Ghavanian N., Enander I., et al. . (1990). Eosinophilic inflammation in asthma. N. Engl. J. Med. 323, 1033–1039. 10.1056/NEJM199010113231505
    1. Bousquet J., Jeffery P. K., Busse W. W., Johnson M., Vignola A. M. (2000). Asthma: from bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit. Care Med. 161, 1720–1745. 10.1164/ajrccm.161.5.9903102
    1. Carbonell W. S., DeLay M., Jahangiri A., Park C. C., Aghi M. K. (2013). β1 integrin targeting potentiates antiangiogenic therapy and inhibits the growth of bevacizumab-resistant glioblastoma. Cancer Res. 73, 3145–3154. 10.1158/0008-5472.CAN-13-0011
    1. Chen G., Khalil N. (2006). TGF-β1 increases proliferation of airway smooth muscle cells by phosphorylation of map kinases. Respir. Res. 7, 1. 10.1186/1465-9921-7-2
    1. Cheung P. F., Wong C. K., Lam C. W. (2008). Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F, and IL-23: implication for Th17 lymphocytes-mediated allergic inflammation. J. Immunol. 180, 5625–5635. 10.4049/jimmunol.180.8.5625
    1. Chiappara G., Gagliardo R., Siena A., Bonsignore M. R., Bousquet J., Bonsignore G., et al. . (2001). Airway remodelling in the pathogenesis of asthma. Curr. Opin. Allergy Clin. Immunol. 1, 85–93. 10.1097/01.all.0000010990.97765.a1
    1. Clevers H. (2006). Wnt/β-catenin signaling in development and disease. Cell 127, 469–480. 10.1016/j.cell.2006.10.018
    1. Dekkers B. G., Bos I. S. T., Gosens R., Halayko A. J., Zaagsma J., Meurs H. (2010). The integrin-blocking peptide RGDS inhibits airway smooth muscle remodeling in a guinea pig model of allergic asthma. Am. J. Respir. Crit. Care Med. 181, 556–565. 10.1164/rccm.200907-1065OC
    1. Dekkers B. G., Maarsingh H., Meurs H., Gosens R. (2009). Airway structural components drive airway smooth muscle remodeling in asthma. Proc. Am. Thorac. Soc. 6, 683–692. 10.1513/pats.200907-056DP
    1. Fajt M. L., Wenzel S. E. (2015). Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care. J. Allergy Clin. Immunol. 135, 299–310. 10.1016/j.jaci.2014.12.1871
    1. Gosens R., Stelmack G. L., Dueck G., McNeill K. D., Yamasaki A., Gerthoffer W. T., et al. . (2006). Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L523–L534. 10.1152/ajplung.00013.2006
    1. Halayko A., Tran T., Ji S., Yamasaki A., Gosens R. (2006). Airway smooth muscle phenotype and function: interactions with current asthma therapies. Curr. Drug Targets 7, 525–540. 10.2174/138945006776818728
    1. Halwani R., Al-Muhsen S., Al-Jahdali H., Hamid Q. (2011). Role of transforming growth factor–β in airway remodeling in asthma. Am. J. Respir. Cell Mol. Biol. 44, 127–133. 10.1165/rcmb.2010-0027TR
    1. Halwani R., Vazquez-Tello A., Sumi Y., Pureza M. A., Bahammam A., Al-Jahdali H., et al. . (2013). Eosinophils induce airway smooth muscle cell proliferation. J. Clin. Immunol. 33, 595–604. 10.1007/s10875-012-9836-3
    1. Holgate S. T. (2000). The bronchial epithelial origins of asthma, in Immunological Mechanisms in Asthma and Allergic Diseases, Vol. 78, ed Robinson D. S. (London: Karger Publishers; ), 62–71.
    1. Hughes J. M., Arthur C. A., Baracho S., Carlin S. M., Hawker K. M., Johnson P. R., et al. . (2000). Human eosinophil–airway smooth muscle cell interactions. Mediators Inflamm. 9, 93–99. 10.1080/096293500411550
    1. James A. L., Elliot J. G., Jones R. L., Carroll M. L., Mauad T., Bai T. R., et al. . (2012). Airway smooth muscle hypertrophy and hyperplasia in asthma. Am. J. Respir. Crit. Care Med. 185, 1058–1064. 10.1164/rccm.201110-1849OC
    1. Januskevicius A., Vaitkiene S., Gosens R., Janulaityte I., Hoppenot D., Sakalauskas R., et al. . (2016). Eosinophils enhance WNT-5a and TGF-β1 genes expression in airway smooth muscle cells and promote their proliferation by increased extracellular matrix proteins production in asthma. BMC Pulm. Med. 16:94. 10.1186/s12890-016-0254-9
    1. Johansson M. W. (2014). Activation states of blood eosinophils in asthma. Clin. Exp. Allergy 44, 482–498. 10.1111/cea.12292
    1. Johansson M. W., Annis D. S., Mosher D. F. (2013). αMβ2 integrin–mediated adhesion and motility of IL-5–stimulated eosinophils on periostin. Am. J. Respir. Cell Mol. Biol. 48, 503–510. 10.1165/rcmb.2012-0150OC
    1. Johansson M. W., Mosher D. F. (2013). Integrin activation states and eosinophil recruitment in asthma. Front. Pharmacol. 4:33. 10.3389/fphar.2013.00033
    1. Johnson P. R., Burgess J. K., Underwood P. A., Au W., Poniris M. H., Tamm M., et al. . (2004). Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism. J. Allergy Clin. Immunol. 113, 690–696 10.1016/j.jaci.2003.12.312
    1. Joseph J., Benedict S., Safa W., Joseph M. (2004). Serum interleukin-5 levels are elevated in mild and moderate persistent asthma irrespective of regular inhaled glucocorticoid therapy. BMC Pulm. Med. 4:1. 10.1186/1471-2466-4-2
    1. Kim S.-H., Turnbull J., Guimond S. (2011). Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209, 139–151. 10.1530/JOE-10-0377
    1. Krug N., Napp U., Enander I., Eklund E., Rieger C., Schauer U. (1999). Intracellular expression and serum levels of eosinophil peroxidase (EPO) and eosinophil cationic protein in asthmatic children. Clin. Exp. Allergy 29, 1507–1515. 10.1046/j.1365-2222.1999.00680.x
    1. Kumawat K., Menzen M. H., Bos I. S. T., Baarsma H. A., Borger P., Roth M., et al. . (2013). Noncanonical WNT-5A signaling regulates TGF-β-induced extracellular matrix production by airway smooth muscle cells. FASEB J. 27, 1631–1643. 10.1096/fj.12-217539
    1. Lee K.-Y., Ho S.-C., Lin H.-C., Lin S.-M., Liu C.-Y., Huang C.-D., et al. . (2006). Neutrophil-derived elastase induces TGF-β1 secretion in human airway smooth muscle via NF-κB pathway. Am. J. Respir. Cell Mol. Biol. 35, 407–414. 10.1165/rcmb.2006-0012OC
    1. Léguillette R., Laviolette M., Bergeron C., Zitouni N., Kogut P., Solway J., et al. . (2009). Myosin, transgelin, and myosin light chain kinase: expression and function in asthma. Am. J. Respir. Crit. Care Med. 179, 194–204. 10.1164/rccm.200609-1367OC
    1. Lintomen L., Franchi G., Nowill A., Condino-Neto A., De Nucci G., Zanesco A., et al. . (2008). Human eosinophil adhesion and degranulation stimulated with eotaxin and RANTES in vitro: lack of interaction with nitric oxide. BMC Pulm. Med. 8:13. 10.1186/1471-2466-8-13
    1. Liu L., Hakansson L., Ridefelt P., Garcia R. C., Venge P. (2003). Priming of eosinophil migration across lung epithelial cell monolayers and upregulation of CD11b/CD18 are elicited by extracellular Ca2+. Am. J. Respir. Cell Mol. Biol. 28, 713–721. 10.1165/rcmb.4771
    1. Liu L., Zuurbier A. E., Mul F. P., Verhoeven A. J., Lutter R., Knol E. F., et al. . (1998). Triple role of platelet-activating factor in eosinophil migration across monolayers of lung epithelial cells: eosinophil chemoattractant and priming agent and epithelial cell activator. J. Immunol. 161, 3064–3070.
    1. Logan C. Y., Nusse R. (2004). The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810. 10.1146/annurev.cellbio.20.010403.113126
    1. Loutsios C., Farahi N., Porter L., Lok L. S., Peters A. M., Condliffe A. M., et al. . (2014). Biomarkers of eosinophilic inflammation in asthma. Expert Rev. Respir. Med. 8, 143–150. 10.1586/17476348.2014.880052
    1. Murdoch J. R., Lloyd C. M. (2010). Chronic inflammation and asthma. Mutat. Res. 690, 24–39. 10.1016/j.mrfmmm.2009.09.005
    1. Ngoc L. P., Gold D. R., Tzianabos A. O., Weiss S. T., Celedon J. C. (2005). Cytokines, allergy, and asthma. Curr. Opin. Allergy Clin. Immunol. 5, 161–166. 10.1097/01.all.0000162309.97480.45
    1. Possa S. S., Charafeddine H. T., Righetti R. F., da Silva P. A., Almeida-Reis R., Saraiva-Romanholo B. M., et al. . (2012). Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 303, L939–L952. 10.1152/ajplung.00034.2012
    1. Ruoslahti E. (1996). RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697–715. 10.1146/annurev.cellbio.12.1.697
    1. Sano M., Leff A. R., Myou S., Boetticher E., Meliton A. Y., Learoyd J., et al. . (2005). Regulation of interleukin-5–induced β2-integrin adhesion of human eosinophils by phosphoinositide 3-kinase. Am. J. Respir. Cell Mol. Biol. 33, 65–70. 10.1165/rcmb.2005-0076OC
    1. Scott K. A., Wardlaw A. J. (2006). Eosinophilic airway disorders. Semin. Respir. Crit. Care Med. 27, 128–133. 10.1055/s-2006-939515
    1. Sethi A., Jain A., Zode G. S., Wordinger R. J., Clark A. F. (2011). Role of TGFβ/Smad signaling in gremlin induction of human trabecular meshwork extracellular matrix proteins. Invest. Ophthalmol. Vis. Sci. 52, 5251–5259. 10.1167/iovs.11-7587
    1. Takagi J. (2004). Structural basis for ligand recognition by RGD (Arg-Gly-Asp)-dependent integrins. Biochem. Soc. Trans. 32, 403–406. 10.1042/bst0320403
    1. Taki F., Kume H., Kobayashi T., Ohta H., Aratake H., Shimokata K. (2007). Effects of Rho-kinase inactivation on eosinophilia and hyper-reactivity in murine airways by allergen challenges. Clin. Exp. Allergy 37, 599–607. 10.1111/j.1365-2222.2007.02693.x
    1. Tanaka H., Yamada G., Saikai T., Hashimoto M., Tanaka S., Suzuki K., et al. . (2003). Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope. Am. J. Respir. Crit. Care Med. 168, 1495–1499. 10.1164/rccm.200306-727OC
    1. Teran L. M. (2000). CCL chemokines and asthma. Immunol. Today 21, 235–242. 10.1016/S0167-5699(00)01634-0
    1. White S. R., Kulp G. V., Spaethe S. M., Van Alstyne E., Leff A. R. (1991). A kinetic assay for eosinophil peroxidase activity in eosinophils and eosinophil conditioned media. J. Immunol. Methods 144, 257–263. 10.1016/0022-1759(91)90094-V
    1. Woodruff P. G., Dolganov G. M., Ferrando R. E., Donnelly S., Hays S. R., Solberg O. D., et al. . (2004). Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am. J. Respir. Crit. Care Med. 169, 1001–1006. 10.1164/rccm.200311-1529OC
    1. Xiao L., Du Y., Shen Y., He Y., Zhao H., Li Z. (2012). TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front. Biosci. 17, 2667–2674. 10.2741/4077
    1. Zagai U., Dadfar E., Lundahl J., Venge P., Sköld C. M. (2007). Eosinophil cationic protein stimulates TGF-β1 release by human lung fibroblasts in vitro. Inflammation 30, 153–160. 10.1007/s10753-007-9032-4

Source: PubMed

3
Subscribe