Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors

Claudia Marcela Diaz, Alberto Chiappori, Luigi Aurisicchio, Ansuman Bagchi, Jason Clark, Sheri Dubey, Arthur Fridman, Jesus C Fabregas, John Marshall, Elisa Scarselli, Nicola La Monica, Gennaro Ciliberto, Alberto J Montero, Claudia Marcela Diaz, Alberto Chiappori, Luigi Aurisicchio, Ansuman Bagchi, Jason Clark, Sheri Dubey, Arthur Fridman, Jesus C Fabregas, John Marshall, Elisa Scarselli, Nicola La Monica, Gennaro Ciliberto, Alberto J Montero

Abstract

Background: DNA electroporation has been demonstrated in preclinical models to be a promising strategy to improve cancer immunity, especially when combined with other genetic vaccines in heterologous prime-boost protocols. We report the results of 2 multicenter phase 1 trials involving adult cancer patients (n=33) with stage II-IV disease.

Methods: Patients were vaccinated with V930 alone, a DNA vaccine containing equal amounts of plasmids expressing the extracellular and trans-membrane domains of human HER2, and a plasmid expressing CEA fused to the B subunit of Escherichia coli heat labile toxin (Study 1), or a heterologous prime-boost vaccination approach with V930 followed by V932, a dicistronic adenovirus subtype-6 viral vector vaccine coding for the same antigens (Study 2).

Results: The use of the V930 vaccination with electroporation alone or in combination with V932 was well-tolerated without any serious adverse events. In both studies, the most common vaccine-related side effects were injection site reactions and arthralgias. No measurable cell-mediated immune response (CMI) to CEA or HER2 was detected in patients by ELISPOT; however, a significant increase of both cell-mediated immunity and antibody titer against the bacterial heat labile toxin were observed upon vaccination.

Conclusion: V930 vaccination alone or in combination with V932 was well tolerated without any vaccine-related serious adverse effects, and was able to induce measurable immune responses against bacterial antigen. However, the prime-boost strategy did not appear to augment any detectable CMI responses against either CEA or HER2.

Trial registration: Study 1 - ClinicalTrials.gov, NCT00250419; Study 2 - ClinicalTrials.gov, NCT00647114.

Figures

Figure 1
Figure 1
V930 DNA plasmids (a) and V932 adenoviral vector (b) encoding for HER2/neu and CEA. V930 is a bivalent DNA plasmid vaccine consisting of a plasmid expressing the ECD and TM domains of HER2 and a plasmid expressing CEA fused to the B subunit of E coli LTB. V932 Ad encodes human CEA fused to LTB and the truncated version of human HER2 tumor antigen (HER2-ECDTM). The CEA-LTB expression is driven by the human CMV IE promoter, whereas mouse CMV IE promoter drives the expression of HER2-ECDTM.
Figure 2
Figure 2
Vaccination schedule with V930 DNA-EP alone (Study 1) and combined V930 DNA-EP→ V932Ad (Study 2). Patients who safely tolerated the highest dose of V930 DNA-EP (2.5 mg/injection) in Study 1 were allowed to enroll directly into Study 2, provided they had completed all 5 V930 vaccinations at least 4 weeks and no more than 24 weeks prior to entry and met all other eligibility criteria.
Figure 3
Figure 3
Frequencies of CEA and HER2/neu specific IFN-γ producing T cells following high-dose V930 DNA-EP vaccination. Longitudinal frequencies were determined from evaluable subjects (n=14); the threshold for CMI response was ≥35 SFC/106 PBMC and ≥3.5-fold above mock (i.e., control well levels [red line]). Differences between time points or between CEA and HER2 and mock were not significant (P>0.05 by Wilcoxon rank sum test). Arrow shows day of last V930-DNA-EP vaccination.
Figure 4
Figure 4
Longitudinal cell-mediated and antibody responses to LTB. a) Frequencies of LTB-specific IFN-γ producing T cells from evaluable subjects in both Studies 1 and 2, who had received low- or high-dose V930 DNA-EP vaccination. Arrow shows day of last V930-DNA-EP vaccination. Differences in peak values (day 87) from baseline levels were statistically significant for anti-LTB antibody responses (*P=0.03 by Wilcoxon rank sum test). b) Anti-LTB antibody responses. Differences in peak values (day 87) from baseline levels were statistically significant for the high-dose cohort (P<0.007 by Wilcoxon rank sum test). Peak levels (day 72) for the low-dose cohort were not significantly different from baseline levels (P>0.05).
Figure 5
Figure 5
Correlation between anti-LTB antibody response, and BMI or weight. A bivariate analysis was performed to determine if BMI or weight were inversely correlated with an LTB response. No effect of weight or BMI was seen on the ratio of post-vaccination to pre-vaccination anti-LTB titers (P>0.20 in each case). LTB, Escherichia coli heat labile enterotoxin, B subunit; BMI, body mass index.

References

    1. Frohlich MW. Sipuleucel-T for the treatment of advanced prostate cancer. Semin Oncol. 2012;39:245–252. doi: 10.1053/j.seminoncol.2012.02.004.
    1. Wesley J, Whitmore J, Trager J, Sheikh N. An overview of sipuleucel-T: autologous cellular immunotherapy for prostate cancer. Hum Vaccine & immunotherapeutics. 2012;8(4):520–527. doi: 10.4161/hv.19188. Epub 2012 Feb 28.
    1. Prieto PA, Yang JC, Sherry RM, Hughes MS, Kammula US, White DE, Levy CL, Rosenberg SA, Phan GQ. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Canc Res: J Am Assoc Canc Res. 2012;18:2039–2047. doi: 10.1158/1078-0432.CCR-11-1823.
    1. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, Lebbe C, Baurain J-F, Testori A, Grob J-J. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–2526. doi: 10.1056/NEJMoa1104621.
    1. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10:909–915. doi: 10.1038/nm1100.
    1. Aurisicchio L, Ciliberto G. Genetic cancer vaccines: current status and perspectives. Expert Opin Biol Ther. 2012;12:1043–1058. doi: 10.1517/14712598.2012.689279.
    1. Williams JA, Carnes AE, Hodgson CP. Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol Adv. 2009;27:353–370.
    1. Plog MS, Guyre CA, Roberts BL, Goldberg M, St George JA, Perricone MA. Preclinical safety and biodistribution of adenovirus-based cancer vaccines after intradermal delivery. Hum Gene Ther. 2006;17:705–716. doi: 10.1089/hum.2006.17.705.
    1. Cappelletti M, Zampaglione I, Rizzuto G, Ciliberto G, La Monica N, Fattori E. Gene electro-transfer improves transduction by modifying the fate of intramuscular DNA. J Gene Med. 2003;5:324–332. doi: 10.1002/jgm.352.
    1. Fattori E, La Monica N, Ciliberto G, Toniatti C. Electro-gene-transfer: a new approach for muscle gene delivery. Somat Cell Mol Genet. 2002;27:75–83. doi: 10.1023/A:1022927822244.
    1. Zampaglione I, Simon AJ, Capone S, Finnefrock AC, Casimiro DR, Kath GS, Tang A, Folgori A, La Monica N, Shiver J. Genetic vaccination by gene electro-transfer in non-human primates. J Drug Del Sci Tech. 2006;16:85.
    1. Hojman P. Basic principles and clinical advancements of muscle electrotransfer. Curr Gene Ther. 2010;10:128–138. doi: 10.2174/156652310791110994.
    1. Facciabene A, Aurisicchio L, Elia L, Palombo F, Mennuni C, Ciliberto G, La Monica N. Vectors encoding carcinoembryonic antigen fused to the B subunit of heat-labile enterotoxin elicit antigen-specific immune responses and antitumor effects. Vaccine. 2007;26:47–58. doi: 10.1016/j.vaccine.2007.10.060.
    1. Letvin NL, Mascola JR, Sun Y, Gorgone DA, Buzby AP, Xu L, Yang ZY, Chakrabarti B, Rao SS, Schmitz JE. Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science. 2006;312:1530–1533. doi: 10.1126/science.1124226.
    1. Shiver JW, Fu TM, Chen L, Casimiro DR, Davies ME, Evans RK, Zhang ZQ, Simon AJ, Trigona WL, Dubey SA. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature. 2002;415:331–335. doi: 10.1038/415331a.
    1. Stephenson J. Defective adenoviruses as novel vaccines for the Flaviviridae. Clin Diagn Virol. 1998;10:187–194. doi: 10.1016/S0928-0197(98)00038-5.
    1. Tims T, Briggs DJ, Davis RD, Moore SM, Xiang Z, Ertl HC, Fu ZF. Adult dogs receiving a rabies booster dose with a recombinant adenovirus expressing rabies virus glycoprotein develop high titers of neutralizing antibodies. Vaccine. 2000;18:2804–2807. doi: 10.1016/S0264-410X(00)00088-8.
    1. Harro C, Sun X, Stek JE, Leavitt RY, Mehrotra DV, Wang F, Bett AJ, Casimiro DR, Shiver JW, DiNubile MJ. Safety and immunogenicity of the Merck adenovirus serotype 5 (MRKAd5) and MRKAd6 human immunodeficiency virus type 1 trigene vaccines alone and in combination in healthy adults. Clin Vaccine Immunol. 2009;16:1285–1292. doi: 10.1128/CVI.00144-09.
    1. McElrath MJ, De Rosa SC, Moodie Z, Dubey S, Kierstead L, Janes H, Defawe OD, Carter DK, Hural J, Akondy R. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet. 2008;372:1894–1905. doi: 10.1016/S0140-6736(08)61592-5.
    1. Cox KS, Clair JH, Prokop MT, Sykes KJ, Dubey SA, Shiver JW, Robertson MN, Casimiro DR. DNA gag/adenovirus type 5 (Ad5) gag and Ad5 gag/Ad5 gag vaccines induce distinct T-cell response profiles. J Virol. 2008;82:8161–8171. doi: 10.1128/JVI.00620-08.
    1. Asmuth DM, Brown EL, DiNubile MJ, Sun X, del Rio C, Harro C, Keefer MC, Kublin JG, Dubey SA, Kierstead LS. Comparative cell-mediated immunogenicity of DNA/DNA, DNA/adenovirus type 5 (Ad5), or Ad5/Ad5 HIV-1 clade B gag vaccine prime-boost regimens. J Infect Dis. 2010;201:132–141. doi: 10.1086/648591.
    1. Peruzzi D, Gavazza A, Mesiti G, Lubas G, Scarselli E, Conforti A, Bendtsen C, Ciliberto G, La Monica N, Aurisicchio L. A vaccine targeting telomerase enhances survival of dogs affected by B-cell lymphoma. Mol Ther: ASGT. 2010;18:1559–1567. doi: 10.1038/mt.2010.104.
    1. Wei CJ, Boyington JC, McTamney PM, Kong WP, Pearce MB, Xu L, Andersen H, Rao S, Tumpey TM, Yang ZY, Nabel GJ. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science. 2010;329:1060–1064. doi: 10.1126/science.1192517.
    1. Churchyard GJ, Morgan C, Adams E, Hural J, Graham BS, Moodie Z, Grove D, Gray G, Bekker LG, McElrath MJ. A phase IIA randomized clinical trial of a multiclade HIV-1 DNA prime followed by a multiclade rAd5 HIV-1 vaccine boost in healthy adults (HVTN204) PloS one. 2011;6(8):e21225. doi: 10.1371/journal.pone.0021225.
    1. Gluck S, Arteaga CL, Osborne CK. Optimizing chemotherapy-free survival for the ER/HER2-positive metastatic breast cancer patient. Clin Canc Res: JAm Assoc Canc Res. 2011;17:5559–5561. doi: 10.1158/1078-0432.CCR-10-2051.
    1. Jones KL, Buzdar AU. Evolving novel anti-HER2 strategies. Lancet Oncol. 2009;10:1179–1187. doi: 10.1016/S1470-2045(09)70315-8.
    1. Kuespert K, Pils S, Hauck CR. CEACAMs: their role in physiology and pathophysiology. Curr Opin Cell Biol. 2006;18:565–571. doi: 10.1016/j.ceb.2006.08.008.
    1. Mennuni C, Calvaruso F, Facciabene A, Aurisicchio L, Storto M, Scarselli E, Ciliberto G, La Monica N. Efficient induction of T-cell responses to carcinoembryonic antigen by a heterologous prime-boost regimen using DNA and adenovirus vectors carrying a codon usage optimized cDNA. Int J Cancer. 2005;117:444–455. doi: 10.1002/ijc.21188.
    1. Mori F, Giannetti P, Peruzzi D, Lazzaro D, Giampaoli S, Kaufman HL, Ciliberto G, La Monica N, Aurisicchio L. A therapeutic cancer vaccine targeting carcinoembryonic antigen in intestinal carcinomas. Hum Gene Ther. 2009;20:125–136. doi: 10.1089/hum.2008.116.
    1. Facciabene A, Aurisicchio L, Elia L, Palombo F, Mennuni C, Ciliberto G, La Monica N. DNA and adenoviral vectors encoding carcinoembryonic antigen fused to immunoenhancing sequences augment antigen-specific immune response and confer tumor protection. Hum Gene Ther. 2006;17:81–92. doi: 10.1089/hum.2006.17.81.
    1. Aurisicchio L, Peruzzi D, Conforti A, Dharmapuri S, Biondo A, Giampaoli S, Fridman A, Bagchi A, Winkelmann CT, Gibson R. Treatment of mammary carcinomas in HER-2 transgenic mice through combination of genetic vaccine and an agonist of Toll-like receptor 9. Clin Canc Res: J Am Assoc Canc Res. 2009;15:1575–1584. doi: 10.1158/1078-0432.CCR-08-2628.
    1. Cipriani B, Fridman A, Bendtsen C, Dharmapuri S, Mennuni C, Pak I, Mesiti G, Forni G, Monaci P, Bagchi A. Therapeutic vaccination halts disease progression in BALB-neuT mice: the amplitude of elicited immune response is predictive of vaccine efficacy. Hum Gene Ther. 2008;19:670–680. doi: 10.1089/hum.2007.127.
    1. Koblin BA, Casapia M, Morgan C, Qin L, Wang ZM, Defawe OD, Baden L, Goepfert P, Tomaras GD, Montefiori DC. Safety and immunogenicity of an HIV adenoviral vector boost after DNA plasmid vaccine prime by route of administration: a randomized clinical trial. PLoS One. 2011;6:e24517. doi: 10.1371/journal.pone.0024517.
    1. Mander AP, Thompson SG. Two-stage designs optimal under the alternative hypothesis for phase II cancer clinical trials. Contemp Clin Trials. 2010;31:572–578. doi: 10.1016/j.cct.2010.07.008.
    1. Stevenson FK, Ottensmeier CH, Rice J. DNA vaccines against cancer come of age. Curr Opin Immunol. 2010;22:264–270. doi: 10.1016/j.coi.2010.01.019.
    1. Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer. 2008;8:108–120. doi: 10.1038/nrc2326.
    1. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009;58:49–59. doi: 10.1007/s00262-008-0523-4.
    1. Montero AJ, Diaz-Montero CM, Kyriakopoulos CE, Bronte V, Mandruzzato S. Myeloid-derived suppressor cells in cancer patients: a clinical perspective. J Immunother. 2012;35:107–115. doi: 10.1097/CJI.0b013e318242169f.
    1. Huber ML, Haynes L, Parker C, Iversen P. Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J Natl Cancer Inst. 2012;104:273–279. doi: 10.1093/jnci/djr514.
    1. Paller CJ, Antonarakis ES. Sipuleucel-T for the treatment of metastatic prostate cancer: promise and challenges. Hum Vaccine & immunotherapeutics. 2012;8(4):509–519. Epub 2012 Apr 1.
    1. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–422. doi: 10.1056/NEJMoa1001294.
    1. Geldmacher A, Freier A, Losch FO, Walden P. Therapeutic vaccination for cancer immunotherapy: antigen selection and clinical responses. Hum Vaccin. 2011;7:115–119.
    1. Madan RA, Bilusic M, Heery C, Schlom J, Gulley JL. Clinical evaluation of TRICOM vector therapeutic cancer vaccines. Semin Oncol. 2012;39:296–304. doi: 10.1053/j.seminoncol.2012.02.010.
    1. Mohebtash M, Tsang KY, Madan RA, Huen NY, Poole DJ, Jochems C, Jones J, Ferrara T, Heery CR, Arlen PM. A pilot study of MUC-1/CEA/TRICOM poxviral-based vaccine in patients with metastatic breast and ovarian cancer. Clin Cancer Res. 2011;17:7164–7173. doi: 10.1158/1078-0432.CCR-11-0649.
    1. Nemunaitis J, Nemunaitis M, Senzer N, Snitz P, Bedell C, Kumar P, Pappen B, Maples PB, Shawler D, Fakhrai H. Phase II trial of Belagenpumatucel-L, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther. 2009;16:620–624. doi: 10.1038/cgt.2009.15.
    1. Bedikian AY, Richards J, Kharkevitch D, Atkins MB, Whitman E, Gonzalez R. A phase 2 study of high-dose Allovectin-7 in patients with advanced metastatic melanoma. Melanoma Res. 2010;20:218–226.
    1. Quoix E, Ramlau R, Westeel V, Papai Z, Madroszyk A, Riviere A, Koralewski P, Breton JL, Stoelben E, Braun D. Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non-small-cell lung cancer: a controlled phase 2B trial. Lancet Oncol. 2011;12:1125–1133. doi: 10.1016/S1470-2045(11)70259-5.
    1. Brunsvig PF, Kyte JA, Kersten C, Sundstrom S, Moller M, Nyakas M, Hansen GL, Gaudernack G, Aamdal S. Telomerase peptide vaccination in NSCLC: a phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial. Clin Cancer Res. 2011;17:6847–6857. doi: 10.1158/1078-0432.CCR-11-1385.

Source: PubMed

3
Subscribe