Effect of 9 weeks continuous vs. interval aerobic training on plasma BDNF levels, aerobic fitness, cognitive capacity and quality of life among seniors with mild to moderate Alzheimer's disease: a randomized controlled trial

Lievyn Enette, Thomas Vogel, Sylvie Merle, Anna-Gaelle Valard-Guiguet, Nathalie Ozier-Lafontaine, Remi Neviere, Claudia Leuly-Joncart, Jean Luc Fanon, Pierre Olivier Lang, Lievyn Enette, Thomas Vogel, Sylvie Merle, Anna-Gaelle Valard-Guiguet, Nathalie Ozier-Lafontaine, Remi Neviere, Claudia Leuly-Joncart, Jean Luc Fanon, Pierre Olivier Lang

Abstract

Background: Evidence suggests that aerobic-type training confers physical benefits and appears to contribute positively to brain health. This study aims to compare the effect of 9-weeks continuous (CAT) to interval aerobic training (IAT) on brain derived neurotrophic factor (BDNF) plasma level, aerobic fitness, cognitive performance, and quality of life among senior with Alzheimer's disease (AD).

Methods: 52 participants were randomly allocated into three groups (CAT n = 14; IAT n = 17; and Controls n = 21). CAT and IAT consisted of 18 sessions of 30-min cycling, twice a week, over 9 weeks. During the same period, controls were engaged in interactive information sessions. Plasma BDNF level; aerobic fitness parameters (Metabolic equivalent task - METs; Maximal Tolerated Power - MTP); functional capacities (6-Minute Walk Test - 6MWT); cognitive performance (Mini Mental State Examination; Rey auditory verbal learning test; and digit span test) and quality of life (Quality Of Life of Alzheimer's Disease scale - QoL-AD) were measured in all participants at baseline and 9 weeks later. A third plasma BDNF level was quantified following a 4 weeks detraining.

Results: No significant change was measured in terms of plasma BDNF level and cognitive performance after interventions, in all groups compared to baseline. After 9 weeks, CAT and IAT significantly improved aerobic fitness parameters compared to controls (METs: + 0.6 and + 1.0 vs. + 0.4; MTP: + 16 watts and + 20 watts vs. + 10 watts; and functional capacities (6MWT: + 22 m and + 31 m vs. -40 m). Compared to controls, QoL-AD after CAT was improved (+ 2 points; p = 0.02).

Conclusions: Neither aerobic exercise modalities significantly modified plasma BDNF levels and cognitive performances. CAT and IAT enhanced aerobic fitness and functional capacities in AD patients and CAT their QoL.

Trial registration: ClinicalTrials.gov website (NCT02968875); registration date: 7 September 2016. "Retrospectively registered".

Keywords: Aerobic exercise, aerobic fitness, BDNF, Alzheimer’s disease, cognitive performance, older adults.

Conflict of interest statement

Competing interestsNone of the above listed authors has any conflicts of interests to declare for the present manuscript.

© The Author(s) 2020.

Figures

Fig. 1
Fig. 1
Consort flow diagram of inclusion, randomization and follow-up including reasons for drop-out
Fig. 2
Fig. 2
Study design and visual presentation of CAT, IAT and CG program. a = watts equivalent to 70% of HRmax or 50% of MTP. Base = watts equivalent to 60% of HRmax. Peak = watts equivalent to 80% of HRmax or MTP – 10 watts. Abbreviations: IMET, Incremental Maximal Exercise Test; BDNF, Brain Derived Neurotrophic Factor; QoL-AD, Quality of life of Alzheimer disease; 6MWT, 6 Minutes walking – test
Fig. 3
Fig. 3
Effect of 9 weeks of aerobic training and 4 weeks of detraining on BDNF plasma level
Fig. 4
Fig. 4
At the bottom, exploratory analysis of plasma BDNF level after 9 weeks of training (week-10) and after a detraining period (week-14) for continuous aerobic (CAT) and interval aerobic training (IAT) group added and control group. Data are presented as median and interquartile range. At the top BDNF plasma level during study *Significant difference between responder and non-responders at baseline (p < 0.05); **Significant difference between baseline and after 9 weeks (p < 0.05); *** Significant difference between baseline and the detraining (p < 0.05)

References

    1. Shah H, Albanese E, Duggan C, Rudan I, Langa KM, Carrillo MC, et al. Research priorities to reduce the global burden of dementia by 2025. Lancet Neurol. 2016;15(12):1285–1294. doi: 10.1016/S1474-4422(16)30235-6.
    1. Hyman BT. The neuropathological diagnosis of Alzheimer’s disease: clinical-pathological studies. Neurobiol Aging. 1997;18(4 Suppl):S27–S32. doi: 10.1016/S0197-4580(97)00066-3.
    1. Harwood RH, Sayer AA, Hirschfeld M. Current and future worldwide prevalence of dependency, its relationship to total population, and dependency ratios. Bull World Health Organ. 2004;82(4):251–258.
    1. Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, et al. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol. 2016;15(5):455–532. doi: 10.1016/S1474-4422(16)00062-4.
    1. Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci. 2003;58(2):M176–M180. doi: 10.1093/gerona/58.2.M176.
    1. Jonasson LS, Nyberg L, Kramer AF, Lundquist A, Riklund K, Boraxbekk CJ. Aerobic exercise intervention, cognitive performance, and brain structure: results from the physical influences on brain in aging (PHIBRA) study. Front Aging Neurosci. 2017;8:336. doi: 10.3389/fnagi.2016.00336.
    1. Bouaziz W, Schmitt E, Vogel T, Lefebvre F, Leprêtre PM, Kaltenbach G, et al. Effects of a short-term interval aerobic training Programme with active recovery bouts (IATP-R) on cognitive and mental health, functional performance and quality of life: a randomised controlled trial in sedentary seniors. Int J Clin Pract. 2018;73:e13219. doi: 10.1111/ijcp.13219.
    1. WHO | Global recommendations on physical activity for health. WHO. World Health Organization; 2010; IBSN: 9789241599979.
    1. Schachter AS, Davis KL. Alzheimer’s disease. Dialogues Clin Neurosci. 2000;2(2):91–100.
    1. Wang R, Holsinger RMD. Exercise-induced brain-derived neurotrophic factor expression: therapeutic implications for Alzheimer’s dementia. Ageing Res Rev. 2018;48:109–121. doi: 10.1016/j.arr.2018.10.002.
    1. Loprinzi PD, Herod SM, Cardinal BJ, Noakes TD. Physical activity and the brain: a review of this dynamic, bi-directional relationship. Brain Res. 2013;1539:95–104. doi: 10.1016/j.brainres.2013.10.004.
    1. Chen W-W, Zhang X, Huang W-J. Role of physical exercise in Alzheimer’s disease. Biomed Rep. 2016;4(4):403–407. doi: 10.3892/br.2016.607.
    1. Souza LC, Filho CB, Goes ATR, Del Fabbro L, de Gomes MG, Savegnago L, et al. Neuroprotective effect of physical exercise in a mouse model of Alzheimer’s disease induced by β-Amyloid1–40 peptide. Neurotox Res. 2013;24(2):148–163. doi: 10.1007/s12640-012-9373-0.
    1. Radak Z, Hart N, Sarga L, Koltai E, Atalay M, Ohno H, et al. Exercise plays a preventive role against Alzheimer’s disease. J Alzheimers Dis. 2010;20(3):777–783. doi: 10.3233/JAD-2010-091531.
    1. Nigam SM, Xu S, Kritikou JS, Marosi K, Brodin L, Mattson MP. Exercise and BDNF reduce Aβ production by enhancing α-secretase processing of APP. J Neurochem. 2017;142(2):286–296. doi: 10.1111/jnc.14034.
    1. Neeper SA, Gómez-Pinilla F, Choi J, Cotman C. Exercise and brain neurotrophins. Nature. 1995;373(6510):109. doi: 10.1038/373109a0.
    1. Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015;60:56–64. doi: 10.1016/j.jpsychires.2014.10.003.
    1. Voss MW, Erickson KI, Prakash RS, Chaddock L, Kim JS, Alves H, et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav Immun. 2013;28:90–99. doi: 10.1016/j.bbi.2012.10.021.
    1. Walsh JJ, Tschakovsky ME. Exercise and circulating BDNF: mechanisms of release and implications for the design of exercise interventions. Appl Physiol Nutr Metab. 2018;43(11):1095–1104. doi: 10.1139/apnm-2018-0192.
    1. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013;18(5):649–659. doi: 10.1016/j.cmet.2013.09.008.
    1. Prigent-Tessier A, Quirié A, Maguin-Gaté K, Szostak J, Mossiat C, Nappey M, et al. Physical training and hypertension have opposite effects on endothelial brain-derived neurotrophic factor expression. Cardiovasc Res. 2013;100(3):374–382. doi: 10.1093/cvr/cvt219.
    1. Monnier A, Prigent-Tessier A, Quirié A, Bertrand N, Savary S, Gondcaille C, et al. Brain-derived neurotrophic factor of the cerebral microvasculature: a forgotten and nitric oxide-dependent contributor of brain-derived neurotrophic factor in the brain. Acta Physiol. 2017;219(4):790–802. doi: 10.1111/apha.12743.
    1. Saucedo Marquez CM, Vanaudenaerde B, Troosters T, Wenderoth N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J Appl Physiol. 2015;119(12):1363–1373. doi: 10.1152/japplphysiol.00126.2015.
    1. Schmolesky MT, Webb DL, Hansen RA. The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. J Sports Sci Med. 2013;12(3):502–511.
    1. Bouaziz W, Vogel T, Schmitt E, Kaltenbach G, Geny B, Lang PO. Health benefits of aerobic training programs in adults aged 70 and over: a systematic review. Arch Gerontol Geriatr. 2017;69:110–127. doi: 10.1016/j.archger.2016.10.012.
    1. Vidoni ED, Johnson DK, Morris JK, Van Sciver A, Greer CS, Billinger SA, et al. Dose-response of aerobic exercise on cognition: a community-based, pilot randomized controlled trial. PLoS One. 2015;10(7):e0131647. doi: 10.1371/journal.pone.0131647.
    1. Huang G, Wang R, Chen P, Huang SC, Donnelly JE, Mehlferber JP. Dose–response relationship of cardiorespiratory fitness adaptation to controlled endurance training in sedentary older adults. Eur J Prev Cardiol. 2016;23(5):518–529. doi: 10.1177/2047487315582322.
    1. Enette L, Vogel T, Fanon JL, Lang PO. Effect of interval and continuous aerobic training on basal serum and plasma brain-derived Neurotrophic factor values in seniors: a systematic review of intervention studies. Rejuvenation Res. 2017;20(6):473–483. doi: 10.1089/rej.2016.1886.
    1. Mackay CP, Kuys SS, Brauer SG. The effect of aerobic exercise on brain-derived Neurotrophic factor in people with neurological disorders: a systematic review and meta-analysis. Neural Plast. 2017:4716197.
    1. Zoladz JA, Pilc A, Majerczak J, Grandys M, Zapart-Bukowska J, Duda K. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 2008;59(Suppl 7):119–132.
    1. First MB, Pincus HA. The DSM-IV Text Revision: rationale and potential impact on clinical practice. Psychiatr Serv. 2002;53(3):288–292. doi: 10.1176/appi.ps.53.3.288.
    1. American Psychiatric Association., American Psychiatric Association. Task Force on DSM-IV. Diagnostic and statistical manual of mental disorders : DSM-IV. American Psychiatric Association; 1994. 886 p.
    1. Shim CY, Ha J-W, Park S, Choi E-Y, Choi D, Rim S-J, et al. Exaggerated blood pressure response to exercise is associated with augmented rise of angiotensin II during exercise. J Am Coll Cardiol. 2008;52(4):287–292. doi: 10.1016/j.jacc.2008.03.052.
    1. Albouaini K, Egred M, Alahmar A, Wright DJ. Cardiopulmonary exercise testing and its application. Postgrad Med J. 2007;83(985):675–682. doi: 10.1136/hrt.2007.121558.
    1. Huggett DL, Connelly DM, Overend TJ. Maximal aerobic capacity testing of older adults: a critical review. J Gerontol A Biol Sci Med Sci. 2005;60(1):57–66. doi: 10.1093/gerona/60.1.57.
    1. Pescatello LS, Arena R, Riebe D, Thompson PD. ACSM’s guidelines for exercise testing and prescription. 9th ed. J Can Chiropr Assoc. 2014;58(3):328.
    1. Troosters T, Gosselink R, Decramer M. Six minute walking distance in healthy elderly subjects. Eur Respir J. 1999;14:270–274. doi: 10.1034/j.1399-3003.1999.14b06.x.
    1. Folstein MF, Folstein SE, McHugh PR. Mini-mental state. J Psychiatr Res. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Doody RS, Massman P, Dunn JK. A method for estimating progression rates in Alzheimer disease. Arch Neurol. 2001;58(3):449–454.
    1. Rey A. L’Examen clinique en psychologie. Paris: PUF; 1970. p. 222.
    1. Kiewel NA, Wisdom NM, Bradshaw MR, Pastorek NJ, Strutt AM. A retrospective review of digit span-related effort indicators in probable Alzheimer’s disease patients. Clin Neuropsychol. 2012;26(6):965–974. doi: 10.1080/13854046.2012.694478.
    1. Wolak A, Novella J-L, Drame M, Guillemin F, Di Pollina L, Ankri J, et al. Transcultural adaptation and psychometric validation of a French-language version of the QoL-AD. Aging Ment Health. 2009;13(4):593–600. doi: 10.1080/13607860902774386.
    1. Logsdon RG, Gibbons LE, McCurry SM, Teri L. Assessing quality of life in older adults with cognitive impairment. Psychosom Med. 1999;64(3):510–519. doi: 10.1097/00006842-200205000-00016.
    1. Clément JP, Nassif RF, Léger JM, Marchan F. Development and contribution to the validation of a brief French version of the Yesavage geriatric depression scale. Encephale. 1997;23(2):91–99.
    1. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults. Med Sci Sport Exerc. 2007;39(8):1435–1445. doi: 10.1249/mss.0b013e3180616aa2.
    1. Yu F, Kolanowski A. Facilitating aerobic exercise training in older adults with Alzheimer’s disease. Geriatr Nurs (Minneap) 2009;30(4):250–259. doi: 10.1016/j.gerinurse.2008.11.001.
    1. Yu F, Swartwood RM. Feasibility and perception of the impact from aerobic exercise in older adults with Alzheimer's disease. Am J Alzheimers Dis Other Dement. 2012;27(6):397–405. doi: 10.1177/1533317512453492.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. doi: 10.1249/00005768-198205000-00012.
    1. Drageset J. The importance of activities of daily living and social contact for loneliness: a survey among residents in nursing homes. Scand J Caring Sci. 2004;18(1):65–71. doi: 10.1111/j.0283-9318.2003.00251.x.
    1. Hoaglin DC, Iglewicz B, Tukey JW. Performance of some resistant rules for outlier labeling. J Am Stat Assoc. 1986;81(396):991–999. doi: 10.1080/01621459.1986.10478363.
    1. Zanardini R, Fontana A, Pagano R, Mazzaro E, Bergamasco F, Romagnosi G, et al. Alterations of brain-derived Neurotrophic factor serum levels in patients with alcohol dependence. Alcohol Clin Exp Res. 2011;35(8):1529–1533.
    1. Kim T-S, Kim D-J, Lee H, Kim Y-K. Increased plasma brain-derived neurotrophic factor levels in chronic smokers following unaided smoking cessation. Neurosci Lett. 2007;423(1):53–57. doi: 10.1016/j.neulet.2007.05.064.
    1. Lemos JR, Alves CR, de Souza SBC, Marsiglia JDC, Silva MSM, Pereira AC, et al. Peripheral vascular reactivity and serum BDNF responses to aerobic training are impaired by the BDNF Val66Met polymorphism. Physiol Genomics. 2016;48(2):116–123. doi: 10.1152/physiolgenomics.00086.2015.
    1. Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, et al. The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PLoS One. 2016;11(9):e0163037. doi: 10.1371/journal.pone.0163037.
    1. Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 2010;40:765–801. doi: 10.2165/11534530-000000000-00000.
    1. Hsiao Y-H, Chang C-H, Gean P-W. Impact of social relationships on Alzheimer’s memory impairment: mechanistic studies. J Biomed Sci. 2018;25(1):3. doi: 10.1186/s12929-018-0404-x.
    1. Yu F, Savik K, Wyman JF, Bronas UG. Maintaining physical fitness and function in Alzheimer’s disease: a pilot study. Am J Alzheimers Dis Other Dement. 2011;26(5):406–412. doi: 10.1177/1533317511414861.
    1. Yu F, Leon AS, Bliss D, Dysken M, Savik K, Wyman JF. Aerobic training for older men with Alzheimer’s disease: individual examples of progression. Res Gerontol Nurs. 2011;4(4):243–250. doi: 10.3928/19404921-20110303-01.
    1. Frederiksen KS, Sobol N, Beyer N, Hasselbalch S, Waldemar G. Moderate-to-high intensity aerobic exercise in patients with mild to moderate Alzheimer’s disease: a pilot study. Int J Geriatr Psychiatry. 2014;29(12):1242–1248. doi: 10.1002/gps.4096.
    1. Scharhag-Rosenberger F, Meyer T, Gäßler N, Faude O, Kindermann W. Exercise at given percentages of VO2max: heterogeneous metabolic responses between individuals. J Sci Med Sport. 2010;13(1):74–79. doi: 10.1016/j.jsams.2008.12.626.
    1. Saucedo Marquez CM, Vanaudenaerde B, Troosters T, Wenderoth N. High intensity interval training evokes larger serum BDNF levels compared to intense continuous exercise. J Appl Physiol. 2015;119(12):1363–1373. doi: 10.1152/japplphysiol.00126.2015.
    1. Balietti M, Giuli C, Conti F. Peripheral blood brain-derived Neurotrophic factor as a biomarker of Alzheimer’s disease: are there methodological biases? Mol Neurobiol. 2018;55(8):6661–6672. doi: 10.1007/s12035-017-0866-y.
    1. De la Monte SM. Type 3 diabetes is sporadic Alzheimer′s disease: mini-review. Eur Neuropsychopharmacol. 2014;24(12):1954–1960. doi: 10.1016/j.euroneuro.2014.06.008.
    1. Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab. 2014;25(2):89–98. doi: 10.1016/j.tem.2013.10.006.
    1. Burbach GJ, Hellweg R, Haas CA, Del Turco D, Deicke U, Abramowski D, et al. Induction of brain-derived Neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice. J Neurosci. 2004;24(10):2421–2430. doi: 10.1523/JNEUROSCI.5599-03.2004.
    1. Angelucci F, Spalletta G, di Iulio F, Ciaramella A, Salani F, Colantoni L, et al. Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients are characterized by increased BDNF serum levels. Curr Alzheimer Res. 2010;7(1):15–20. doi: 10.2174/156720510790274473.
    1. Faria MC, Santos Gonçalves G, Rocha NP, Moraes EN, Bicalho MA, Túlio M, et al. Increased plasma levels of BDNF and inflammatory markers in Alzheimer’s disease. J Psychiatr Res. 2014;53:166–172. doi: 10.1016/j.jpsychires.2014.01.019.
    1. Kimura N, Takahashi M, Tashiro T, Terao K. Amyloid β up-regulates brain-derived neurotrophic factor production from astrocytes: rescue from amyloid β-related neuritic degeneration. J Neurosci Res. 2006;84(4):782–789. doi: 10.1002/jnr.20984.
    1. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology. 1998;37(12):1553–1561. doi: 10.1016/S0028-3908(98)00141-5.
    1. Nonomura T, Tsuchida A, Ono-Kishino M, Nakagawa T, Taiji M, Noguchi H. Brain-derived neurotrophic factor regulates energy expenditure through the central nervous system in obese diabetic mice. Int J Exp Diabetes Res. 2001;2(3):201–209. doi: 10.1155/EDR.2001.201.
    1. Lewin GR, Barde Y-A. Physiology of the Neurotrophins. Annu Rev Neurosci. 1996;19(1):289–317. doi: 10.1146/annurev.ne.19.030196.001445.
    1. Dougherty RJ, Moon HY, Boots EA, Becke A, Düzel E, Wagner M, et al. The effect of aerobic exercise training on serum BDNF in preclinical Alzheimer's disease. Alzheimers Dement. 2018;14(7):986. doi: 10.1016/j.jalz.2018.06.1333.
    1. SE O, Hobson V, Hall JR, Waring SC, Chan W, Massman P, et al. Brain-derived Neurotrophic factor levels in Alzheimer’s disease. J Alzheimers Dis. 2009;17(2):337–341. doi: 10.3233/JAD-2009-1051.
    1. O’Bryant SE, Hobson VL, Hall JR, Barber RC, Zhang S, Johnson L, et al. Serum brain-derived neurotrophic factor levels are specifically associated with memory performance among Alzheimer’s disease cases. Dement Geriatr Cogn Disord. 2011;31(1):31–36. doi: 10.1159/000321980.
    1. Cammisuli DM, Innocenti A, Fusi J, Franzoni F, Pruneti C. Aerobic exercise effects upon cognition in Alzheimer’s disease: a systematic review of randomized controlled trials. Arch Ital Biol. 2018;156(1–2):54–63.
    1. Sanders Lianne M. J., Hortobágyi Tibor, la Bastide-van Gemert Sacha, van der Zee Eddy A., van Heuvelen Marieke J. G. Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: A systematic review and meta-analysis. PLOS ONE. 2019;14(1):e0210036. doi: 10.1371/journal.pone.0210036.
    1. Öhman H, Savikko N, Strandberg TE, Pitkälä KH. Effect of physical exercise on cognitive performance in older adults with mild cognitive impairment or dementia: a systematic review. Dement Geriatr Cogn Disord. 2014;38(5–6):347–365. doi: 10.1159/000365388.
    1. Groot C, Hooghiemstra AM, Raijmakers PGHM, van Berckel BNM, Scheltens P, Scherder EJA, et al. The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res Rev. 2016;25:13–23. doi: 10.1016/j.arr.2015.11.005.
    1. Kemoun G, Thibaud M, Roumagne N, Carette P, Albinet C, Toussaint L, et al. Effects of a physical training programme on cognitive function and walking efficiency in elderly persons with dementia. Dement Geriatr Cogn Disord. 2010;29(2):109–114. doi: 10.1159/000272435.
    1. Yu F, Thomas W, Nelson NW, Bronas UG, Dysken M, Wyman JF. Impact of 6-month aerobic exercise on Alzheimer’s symptoms. J Appl Gerontol. 2015;34(4):484–500. doi: 10.1177/0733464813512895.
    1. Maass A, Düzel S, Brigadski T, Goerke M, Becke A, Sobieray U, et al. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage. 2016;131:142–154. doi: 10.1016/j.neuroimage.2015.10.084.
    1. Arnett SW, Laity JH, Agrawal SK, Cress ME. Aerobic reserve and physical functional performance in older adults. Age Ageing. 2008;37(4):384–389. doi: 10.1093/ageing/afn022.
    1. Forbes D, Thiessen EJ, Blake CM, Forbes SS, Forbes S. Exercise programs for people with dementia. Sao Paulo Med J. 2014;132(3):195–196. doi: 10.1590/1516-3180.20141323T2.
    1. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women. JAMA. 2009;301(19):2024. doi: 10.1001/jama.2009.681.
    1. Sobol NA, Dall CH, Høgh P, Hoffmann K, Frederiksen KS, Vogel A, et al. Change in fitness and the relation to change in cognition and neuropsychiatric symptoms after aerobic exercise in patients with mild Alzheimer’s disease. J Alzheimers Dis. 2018;65(1):137–145. doi: 10.3233/JAD-180253.
    1. Lavie CJ, Arena R, Swift DL, Johannsen NM, Sui X, Lee D-C, et al. Exercise and the cardiovascular system: clinical science and cardiovascular outcomes. Circ Res. 2015;117(2):207–219. doi: 10.1161/CIRCRESAHA.117.305205.
    1. Callisaya ML, Launay CP, Srikanth VK, Verghese J, Allali G, Beauchet O. Cognitive status, fast walking speed and walking speed reserve—the Gait and Alzheimer interactions tracking (GAIT) study. Geroscience. 2017;39(2):231–239. doi: 10.1007/s11357-017-9973-y.
    1. Venturelli M, Scarsini R, Schena F. Six-month walking program changes cognitive and ADL performance in patients with Alzheimer. Am J Alzheimers Dis Other Dement. 2011;26(5):381–388. doi: 10.1177/1533317511418956.
    1. Morris JK, Vidoni ED, Johnson DK, Van Sciver A, Mahnken JD, Honea RA, et al. Aerobic exercise for Alzheimer’s disease: a randomized controlled pilot trial. PLoS One. 2017;12(2):e0170547. doi: 10.1371/journal.pone.0170547.
    1. Miu D, Edin F, Szeto S, Mak Y. A randomised controlled trial on the effect of exercise on physical, cognitive and affective function in dementia subjects. Asian J Gerontol Geriatr. 2008;3(1):8–16.
    1. Kahle-Wrobleski K, Ye W, Henley D, Hake AM, Siemers E, Chen Y-F, et al. Assessing quality of life in Alzheimer’s disease: Implications for clinical trials. Alzheimer’s Dement (Amst) 2017;6:82–90.
    1. Williams CL, Tappen RM. Effect of exercise on mood in nursing home residents with Alzheimer’s disease. Am J Alzheimer’s Dis Other Dementiasr. 2007;22(5):389–397. doi: 10.1177/1533317507305588.
    1. Zamani Sani SH, Fathirezaie Z, Brand S, Pühse U, Holsboer-Trachsler E, Gerber M, et al. Physical activity and self-esteem: testing direct and indirect relationships associated with psychological and physical mechanisms. Neuropsychiatr Dis Treat. 2016;12:2617–2625. doi: 10.2147/NDT.S116811.
    1. Abd El-Kader Shehab M., Al-Jiffri Osama H. Aerobic exercise improves quality of life, psychological well-being and systemic inflammation in subjects with Alzheimer’s disease. African Health Sciences. 2017;16(4):1045. doi: 10.4314/ahs.v16i4.22.
    1. Salinas J, Beiser A, Himali JJ, Satizabal CL, Aparicio HJ, Weinstein G, et al. Associations between social relationship measures, serum brain-derived neurotrophic factor, and risk of stroke and dementia. Alzheimer’s Dement (New York, N Y) 2017;3(2):229–237.
    1. Nascimento CMC, Pereira JR, Pires de Andrade L, Garuffi M, Ayan C, Kerr DS, et al. Physical exercise improves peripheral BDNF levels and cognitive functions in mild cognitive impairment elderly with different bdnf Val66Met genotypes. J Alzheimers Dis. 2015;43(1):81–91. doi: 10.3233/JAD-140576.

Source: PubMed

3
Subscribe