Impact of Physical Activity on Oxidative Stress Markers in Patients with Metastatic Breast Cancer

Lidia Delrieu, Marina Touillaud, Olivia Pérol, Magali Morelle, Agnès Martin, Christine M Friedenreich, Pauline Mury, Armelle Dufresne, Thomas Bachelot, Pierre-Etienne Heudel, Béatrice Fervers, Olivier Trédan, Vincent Pialoux, Lidia Delrieu, Marina Touillaud, Olivia Pérol, Magali Morelle, Agnès Martin, Christine M Friedenreich, Pauline Mury, Armelle Dufresne, Thomas Bachelot, Pierre-Etienne Heudel, Béatrice Fervers, Olivier Trédan, Vincent Pialoux

Abstract

Purpose: Regular physical activity (PA) can affect oxidative stress, known to be involved in carcinogenesis. The objective of this study was to evaluate the associations between a six-month PA intervention and oxidative stress biomarkers, PA, and clinical outcomes in patients with metastatic breast cancer.

Methods: Forty-nine newly diagnosed patients with metastatic breast cancer were recruited for a single-arm, unsupervised, and personalized six-month walking intervention with activity tracker. PA level and PA fitness, plasma concentrations of DNA oxidation (8OhdG), lipid peroxidation (MDA), and protein oxidation (AOPP), plasma activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase, plasma and leucocyte activities of myeloperoxidase (MPO) and NADPH oxidase (NOX), and clinical markers of tumor progression (RECIST criteria) were measured at baseline and after the six-month intervention.

Results: GPX activity (+17%) and MDA (+9%) significantly increased between baseline and the end of the intervention. Changes in PA level and fitness were significantly positively correlated with changes in plasma GPX and significantly negatively with changes in NOX in the leucocytes. Plasma MDA was significantly higher (+20%) whereas plasma AOPP was lower (-46%) for patients with tumor progression or that died during the six months as compared to patients without progression.

Conclusion: A six-month PA intervention may be potentially beneficial in metastatic breast cancer patients for enhancing antioxidant enzyme activity and decreasing prooxidant enzyme activity. Moreover, AOPP and MDA could also be favorable and unfavorable biomarkers, respectively, since they are associated with disease progression and fitness level in this population. This trial is registered with NCT number: NCT03148886.

Conflict of interest statement

No author reports any competing financial interest.

Copyright © 2021 Lidia Delrieu et al.

Figures

Figure 1
Figure 1
Change of MDA (a) and GPX (b) between baseline and the end of the six-month physical activity intervention, ABLE study, 2016-2018. MDA: malondialdehyde; GPX: glutathione peroxidase. ∗p < 0.05 vs. baseline.
Figure 2
Figure 2
Correlation plot of changes in oxidative stress markers, physical activity level, and physical fitness between baseline and the end of the six-month physical activity intervention, ABLE study, 2016-2018. CAT: catalase; SOD: superoxide dismutase; NOX: nicotinamide adenine dinucleotide phosphate oxidase; MPO: myeloperoxidase; 8-OhdG: 8-hydroxydeoxyguanosine; AOPP: advanced oxidation protein products; MDA: malondialdehyde; GPX: glutathione peroxidase; 6WD: 6-minute walking distance; Quadriceps: isometric quadriceps strength; PA: total physical activity; Daily steps: mean steps per day over a month. Blue and red circles represent positive and negative correlations, respectively; size and color intensity of the circle represent the strength of the correlation.

References

    1. O’Shaughnessy J. Extending survival with chemotherapy in metastatic breast cancer. The Oncologist. 2005;10:20–29. doi: 10.1634/theoncologist.10-90003-20.
    1. International Consensus Conference for Advanced Breast Cancer. Global Status of Advanced/Metastatic Breast Cancer 2005–2015 Decade Report. 2016, .
    1. Ballard-Barbash R., Friedenreich C. M., Courneya K. S., Siddiqi S. M., McTiernan A., Alfano C. M. Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review. Journal of the National Cancer Institute. 2012;104(11):815–840. doi: 10.1093/jnci/djs207.
    1. Speck R. M., Courneya K. S., Mâsse L. C., Duval S., Schmitz K. H. An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. Journal of Cancer Survivorship. 2010;4(2):87–100. doi: 10.1007/s11764-009-0110-5.
    1. Kojda G., Hambrecht R. Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? Cardiovascular Research. 2005;67(2):187–197. doi: 10.1016/j.cardiores.2005.04.032.
    1. Vera-Ramirez L., Sanchez-Rovira P., Ramirez-Tortosa M. C., et al. Does chemotherapy-induced oxidative stress improve the survival rates of breast cancer patients? Antioxidants & Redox Signaling. 2011;15(4):903–909. doi: 10.1089/ars.2011.3993.
    1. Karimi N., Roshan V. D. Change in adiponectin and oxidative stress after modifiable lifestyle interventions in breast cancer cases. Asian Pacific Journal of Cancer Prevention. 2013;14(5):2845–2850. doi: 10.7314/APJCP.2013.14.5.2845.
    1. Eleutério-Silva M., Fonseca L., Velloso E., et al. Short-term cardiovascular physical programme ameliorates arterial stiffness and decreases oxidative stress in women with metabolic syndrome. Journal of Rehabilitation Medicine. 2013;45(6):572–579. doi: 10.2340/16501977-1148.
    1. Cooke M. S., Olinski R., Evans M. D. Does measurement of oxidative damage to DNA have clinical significance? Clinica Chimica Acta. 2006;365(1-2):30–49. doi: 10.1016/j.cca.2005.09.009.
    1. Hussain S. P., Hofseth L. J., Harris C. C. Radical causes of cancer. Nature Reviews Cancer. 2003;3(4):276–285. doi: 10.1038/nrc1046.
    1. Dejeans N., Glorieux C., Guenin S., et al. Overexpression of GRP94 in breast cancer cells resistant to oxidative stress promotes high levels of cancer cell proliferation and migration: implications for tumor recurrence. Free Radical Biology & Medicine. 2012;52(6):993–1002. doi: 10.1016/j.freeradbiomed.2011.12.019.
    1. Vera-Ramirez L., Sanchez-Rovira P., Ramirez-Tortosa M. C., et al. Oxidative stress status in metastatic breast cancer patients receiving palliative chemotherapy and its impact on survival rates. Free Radical Research. 2012;46(1):2–10. doi: 10.3109/10715762.2011.635658.
    1. Loft S., Møller P., Cooke M. S., Rozalski R., Olinski R. Antioxidant vitamins and cancer risk: is oxidative damage to DNA a relevant biomarker? European Journal of Nutrition. 2008;47(S2):19–28. doi: 10.1007/s00394-008-2004-0.
    1. Himmetoglu S., Dincer Y., Ersoy Y. E., Bayraktar B., Celik V., Akcay T. DNA oxidation and antioxidant status in breast cancer. Journal of Investigative Medicine. 2009;57(6):720–723. doi: 10.2310/JIM.0b013e3181adfb5b.
    1. Malins D. C., Polissar N. L., Gunselman S. J. Progression of human breast cancers to the metastatic state is linked to hydroxyl radical-induced DNA damage. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(6):2557–2563. doi: 10.1073/pnas.93.6.2557.
    1. Rossner P., Gammon M. D., Terry M. B., et al. Relationship between urinary 15-F2t-isoprostane and 8-oxodeoxyguanosine levels and breast cancer risk. Cancer Epidemiology, Biomarkers & Prevention. 2006;15(4):639–644. doi: 10.1158/1055-9965.EPI-05-0554.
    1. van Dam P. A., Vergote I. B., Laekeman G. M., Keersmaeckers G. H., Uyttenbroeck F. L., Herman A. G. Prognostic value of prostaglandin F2 alpha concentrations in breast carcinoma. Journal of Clinical Pathology. 1989;42(10):1046–1048. doi: 10.1136/jcp.42.10.1046.
    1. Kilic N., Yavuz Taslipinar M., Guney Y., Tekin E., Onuk E. An investigation into the serum thioredoxin, superoxide dismutase, malondialdehyde, and advanced oxidation protein products in patients with breast cancer. Annals of Surgical Oncology. 2014;21(13):4139–4143. doi: 10.1245/s10434-014-3859-3.
    1. Hamed E. A., Zakhary M. M., Maximous D. W. Apoptosis, angiogenesis, inflammation, and oxidative stress: basic interactions in patients with early and metastatic breast cancer. Journal of Cancer Research and Clinical Oncology. 2012;138(6):999–1009. doi: 10.1007/s00432-012-1176-4.
    1. Ambrosone C. B. Oxidants and antioxidants in breast cancer. Antioxidants & Redox Signaling. 2000;2(4):903–917. doi: 10.1089/ars.2000.2.4-903.
    1. Gutteridge J. M. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry. 1995;41(12):1819–1828. doi: 10.1093/clinchem/41.12.1819.
    1. Goswami B., Rajappa M., Gupta N., Mahto M., Hadke N. S., Mishra T. K. Breast cancer: interaction between oxidant-antioxidant dynamics and inflammation in Indian females. Cancer Biomarkers. 2010;6(2):95–103. doi: 10.3233/CBM-2009-0122.
    1. Rajneesh C. P., Manimaran A., Sasikala K. R., Adaikappan P. Lipid peroxidation and antioxidant status in patients with breast cancer. Singapore Medical Journal. 2008;49(8):640–643.
    1. Buser K., Joncourt F., Altermatt H. J., Bacchi M., Oberli A., Cerny T. Breast cancer: pretreatment drug resistance parameters (GSH-system, ATase, P-glycoprotein) in tumor tissue and their correlation with clinical and prognostic characteristics. Annals of Oncology. 1997;8(4):335–341. doi: 10.1023/A:1008202723066.
    1. Hubackova M., Vaclavikova R., Ehrlichova M., et al. Association of superoxide dismutases and NAD(P)H quinone oxidoreductases with prognosis of patients with breast carcinomas. International Journal of Cancer. 2012;130(2):338–348. doi: 10.1002/ijc.26006.
    1. Delrieu L., Pérol O., Fervers B., et al. A personalized physical activity program with activity trackers and a mobile phone app for patients with metastatic breast cancer: protocol for a single-arm feasibility trial. JMIR Research Protocols. 2018;7(8, article e10487) doi: 10.2196/10487.
    1. Delrieu L., Pialoux V., Pérol O., et al. Feasibility and health benefits of an individualized physical activity intervention in women with metastatic breast cancer: intervention study. JMIR mHealth and uHealth. 2020;8(1, article e12306) doi: 10.2196/12306.
    1. Delrieu L., Pérol O., Fervers B., et al. Activite physique et cancer du sein metastatique : etude ABLE de faisabilite. Science & Sports. 2018;33:p. S19. doi: 10.1016/j.scispo.2018.03.022.
    1. Crinière L., Lhommet C., Caille A., et al. Reproducibility and validity of the French version of the long international physical activity questionnaire in patients with type 2 diabetes. Journal of Physical Activity & Health. 2011;8(6):858–865. doi: 10.1123/jpah.8.6.858.
    1. Ribon-Demars A., Pialoux V., Boreau A., et al. Protective roles of estradiol against vascular oxidative stress in ovariectomized female rats exposed to normoxia or intermittent hypoxia. Acta Physiologica. 2019;225, article e13159 doi: 10.1111/apha.13159.
    1. Merino J., Ferré R., Girona J., et al. Even low physical activity levels improve vascular function in overweight and obese postmenopausal women. Menopause. 2013;20(10):1036–1042. doi: 10.1097/GME.0b013e31828501c9.
    1. Pialoux V., Brown A. D., Leigh R., Friedenreich C. M., Poulin M. J. Effect of cardiorespiratory fitness on vascular regulation and oxidative stress in postmenopausal women. Hypertension. 2009;54(5):1014–1020. doi: 10.1161/HYPERTENSIONAHA.109.138917.
    1. Cangemi R., Loffredo L., Battaglia S., et al. Does regular physical exercise preserve artery dilation by lowering Nox2-related oxidative stress? Antioxidants & Redox Signaling. 2018;28(17):1576–1581. doi: 10.1089/ars.2017.7296.
    1. He F., Li J., Liu Z., Chuang C. C., Yang W., Zuo L. Redox mechanism of reactive oxygen species in exercise. Frontiers in Physiology. 2016;7:p. 486. doi: 10.3389/fphys.2016.00486.
    1. Jiang F., Lim H. K., Morris M. J., et al. Systemic upregulation of NADPH oxidase in diet-induced obesity in rats. Redox Report. 2011;16(6):223–229. doi: 10.1179/174329211X13049558293713.
    1. Youssef H., Groussard C., Lemoine-Morel S., et al. Aerobic training suppresses exercise-induced lipid peroxidation and inflammation in overweight/obese adolescent girls. Pediatric Exercise Science. 2015;27(1):67–76. doi: 10.1123/pes.2014-0008.
    1. Lefèvre G., Beljean-Leymarie M., Beyerle F., et al. Evaluation of lipid peroxidation by measuring thiobarbituric acid reactive substances. Annales de Biologie Clinique. 1998;56(3):305–319.
    1. Witko-Sarsat V., Friedlander M., Capeillère-Blandin C., et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney International. 1996;49(5):1304–1313. doi: 10.1038/ki.1996.186.
    1. Gratas-Delamarche A., Derbré F., Vincent S., Cillard J. Physical inactivity, insulin resistance, and the oxidative-inflammatory loop. Free Radical Research. 2014;48(1):93–108. doi: 10.3109/10715762.2013.847528.
    1. Wang Y., Cortez D., Yazdi P., Neff N., Elledge S. J., Qin J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes & Development. 2000;14(8):927–939.
    1. Francisco D. C., Peddi P., Hair J. M., et al. Induction and processing of complex DNA damage in human breast cancer cells MCF-7 and nonmalignant MCF-10A cells. Free Radical Biology & Medicine. 2008;44(4):558–569. doi: 10.1016/j.freeradbiomed.2007.10.045.
    1. Sawczuk B., Maciejczyk M., Sawczuk-Siemieniuk M., Posmyk R., Zalewska A., Car H. Salivary gland function, antioxidant defence and oxidative damage in the saliva of patients with breast cancer: does the BRCA1 mutation disturb the salivary redox profile? Cancers. 2019;11(10):p. 1501. doi: 10.3390/cancers11101501.
    1. Bloomer R. J. Chapter 1 Effect of exercise on oxidative stress biomarkers. Advances in Clinical Chemistry. 2008;46:1–50. doi: 10.1016/S0065-2423(08)00401-0.
    1. Delrieu L., Anota A., Trédan O., et al. Design and methods of a national, multicenter, randomized and controlled trial to assess the efficacy of a physical activity program to improve health-related quality of life and reduce fatigue in women with metastatic breast cancer: ABLE02 trial. BMC Cancer. 2020;20(1):p. 622. doi: 10.1186/s12885-020-07093-9.

Source: PubMed

3
Subscribe