Time-Restricted Eating Regimen Differentially Affects Circulatory miRNA Expression in Older Overweight Adults

Sunil K Saini, Arashdeep Singh, Manisha Saini, Marta Gonzalez-Freire, Christiaan Leeuwenburgh, Stephen D Anton, Sunil K Saini, Arashdeep Singh, Manisha Saini, Marta Gonzalez-Freire, Christiaan Leeuwenburgh, Stephen D Anton

Abstract

Time-restricted eating (TRE), a popular form of intermittent fasting, has been demonstrated to provide multiple health benefits, including an extension of healthy lifespan in preclinical models. While the specific mechanisms remain elusive, emerging research indicates that one plausible mechanism through which TRE may confer health benefits is by influencing the expression of the epigenetic modulator circulatory miRNAs, which serve as intercellular communicators and are dysregulated in metabolic disorders, such as obesity. Therefore, the goal of this pilot study is to examine the effects of a 4-week TRE regimen on global circulatory miRNA from older (≥65 years) overweight participants. Pre- and post-TRE regimen serum samples from nine individuals who participated in the Time to Eat clinical trial (NCT03590847) and had a significant weight loss (2.6 kg, p < 0.01) were analyzed. The expressions of 2083 human miRNAs were quantified using HTG molecular whole transcriptome miRNA assay. In silico analyses were performed to determine the target genes and biological pathways associated with differentially expressed miRNAs to predict the metabolic effects of the TRE regimen. Fourteen miRNAs were differentially expressed pre- and post-TRE regimen. Specifically, downregulated miRNA targets suggested increased expression of transcripts, including PTEN, TSC1, and ULK1, and were related to cell growth and survival. Furthermore, the targets of downregulated miRNAs were associated with Ras signaling (cell growth and proliferation), mTOR signaling (cell growth and protein synthesis), insulin signaling (glucose uptake), and autophagy (cellular homeostasis and survival). In conclusion, the TRE regimen downregulated miRNA, which, in turn, could inhibit the pathways of cell growth and activate the pathways of cell survival and might promote healthy aging. Future mechanistic studies are required to understand the functional role of the miRNAs reported in this study.

Keywords: cell survival; diet; fat loss; intermittent fasting; weight loss.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Differentially expressed miRNAs between human subjects during the pre- and post-TRE regimen. Highlighted are the names of differentially expressed miRNAs with p < 0.05. Upregulated miRNAs are represented on the upper right quadrant (red dots) and downregulated miRNAs on the upper left quadrant (blue dots).
Figure 2
Figure 2
Protein–protein interaction analysis representing the interaction networks of miRNA target proteins, depicting two major clusters (PTEN and MAPK1) in the network.

References

    1. Patikorn C., Roubal K., Veettil S.K., Chandran V., Pham T., Lee Y.Y., Giovannucci E.L., Varady K.A., Chaiyakunapruk N. Intermittent Fasting and Obesity-Related Health Outcomes: An Umbrella Review of Meta-analyses of Randomized Clinical Trials. JAMA Netw. Open. 2021;4:e2139558. doi: 10.1001/jamanetworkopen.2021.39558.
    1. Liang B.-J., Liao S.-R., Huang W.-X., Huang C., Liu H.S., Shen W.-Z. Intermittent fasting therapy promotes insulin sensitivity by inhibiting NLRP3 inflammasome in rat model. Ann. Palliat. Med. 2021;10:5299–5309. doi: 10.21037/apm-20-2410.
    1. Bhutani S., Klempel M.C., Berger R.A., Varady K.A. Improvements in coronary heart disease risk indicators by alternate-day fasting involve adipose tissue modulations. Obesity. 2010;18:2152–2159. doi: 10.1038/oby.2010.54.
    1. Malinowski B., Zalewska K., Węsierska A., Sokołowska M.M., Socha M., Liczner G., Pawlak-Osińska K., Wiciński M. Intermittent fasting in cardiovascular disorders—an overview. Nutrients. 2019;11:673. doi: 10.3390/nu11030673.
    1. Mattson M.P., Longo V.D., Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 2017;39:46–58. doi: 10.1016/j.arr.2016.10.005.
    1. de Cabo R., Mattson M.P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 2019;381:2541–2551. doi: 10.1056/NEJMra1905136.
    1. Cienfuegos S., Gabel K., Kalam F., Ezpeleta M., Wiseman E., Pavlou V., Lin S., Oliveira M.L., Varady K.A. Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metab. 2020;32:366–378.e3. doi: 10.1016/j.cmet.2020.06.018.
    1. Moon S., Kang J., Kim S.H., Chung H.S., Kim Y.J., Yu J.M., Cho S.T., Oh C.-M., Kim T. Beneficial Effects of Time-Restricted Eating on Metabolic Diseases: A Systemic Review and Meta-Analysis. Nutrients. 2020;12:1267. doi: 10.3390/nu12051267.
    1. Anton S.D., Lee S.A., Donahoo W.T., McLaren C., Manini T., Leeuwenburgh C., Pahor M. The Effects of Time Restricted Feeding on Overweight, Older Adults: A Pilot Study. Nutrients. 2019;11:1500. doi: 10.3390/nu11071500.
    1. Regmi P., Heilbronn L.K. Time-Restricted Eating: Benefits, Mechanisms, and Challenges in Translation. iScience. 2020;23:101161. doi: 10.1016/j.isci.2020.101161.
    1. Anton S.D., Moehl K., Donahoo W.T., Marosi K., Lee S.A., Mainous A.G., 3rd, Leeuwenburgh C., Mattson M.P. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity. 2018;26:254–268. doi: 10.1002/oby.22065.
    1. Kogure A., Uno M., Ikeda T., Nishida E. The microRNA machinery regulates fasting-induced changes in gene expression and longevity in Caenorhabditis elegans. J. Biol. Chem. 2017;292:11300–11309. doi: 10.1074/jbc.M116.765065.
    1. Garcia-Segura L., Abreu-Goodger C., Hernandez-Mendoza A., Dimitrova Dinkova T.D., Padilla-Noriega L., Perez-Andrade M.E., Miranda-Rios J. High-throughput profiling of Caenorhabditis elegans starvation-responsive microRNAs. PLoS ONE. 2015;10:e0142262. doi: 10.1371/journal.pone.0142262.
    1. Gebert L.F.R., MacRae I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019;20:21–37. doi: 10.1038/s41580-018-0045-7.
    1. Ji C., Guo X. The clinical potential of circulating microRNAs in obesity. Nat. Rev. Endocrinol. 2019;15:731–743. doi: 10.1038/s41574-019-0260-0.
    1. Oses M., Margareto Sanchez J., Portillo M.P., Aguilera C.M., Labayen I. Circulating miRNAs as Biomarkers of Obesity and Obesity-Associated Comorbidities in Children and Adolescents: A Systematic Review. Nutrients. 2019;11:2890. doi: 10.3390/nu11122890.
    1. Landrier J.F., Derghal A., Mounien L. MicroRNAs in Obesity and Related Metabolic Disorders. Cells. 2019;8:859. doi: 10.3390/cells8080859.
    1. Zhou S.-s., Jin J.-p., Wang J.-q., Zhang Z.-g., Freedman J.H., Zheng Y., Cai L. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges. Acta Pharmacol. Sin. 2018;39:1073–1084. doi: 10.1038/aps.2018.30.
    1. Fritz J.V., Heintz-Buschart A., Ghosal A., Wampach L., Etheridge A., Galas D., Wilmes P. Sources and functions of extracellular small RNAs in human circulation. Annu. Rev. Nutr. 2016;36:301–336. doi: 10.1146/annurev-nutr-071715-050711.
    1. Gallo A., Tandon M., Alevizos I., Illei G.G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE. 2012;7:e30679. doi: 10.1371/journal.pone.0030679.
    1. Valadi H., Ekstrom K., Bossios A., Sjostrand M., Lee J.J., Lotvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–659. doi: 10.1038/ncb1596.
    1. Thomou T., Mori M.A., Dreyfuss J.M., Konishi M., Sakaguchi M., Wolfrum C., Rao T.N., Winnay J.N., Garcia-Martin R., Grinspoon S.K. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542:450–455. doi: 10.1038/nature21365.
    1. Withers S.B., Dewhurst T., Hammond C., Topham C.H. MiRNAs as novel adipokines: Obesity-related circulating MiRNAs influence chemosensitivity in cancer patients. Non-Coding RNA. 2020;6:5. doi: 10.3390/ncrna6010005.
    1. Dumortier O., Hinault C., Van Obberghen E. MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab. 2013;18:312–324. doi: 10.1016/j.cmet.2013.06.004.
    1. Wood S.H., van Dam S., Craig T., Tacutu R., O’Toole A., Merry B.J., de Magalhães J.P. Transcriptome analysis in calorie-restricted rats implicates epigenetic and post-translational mechanisms in neuroprotection and aging. Genome Biol. 2015;16:285. doi: 10.1186/s13059-015-0847-2.
    1. Schneider A., Dhahbi J.M., Atamna H., Clark J.P., Colman R.J., Anderson R.M. Caloric restriction impacts plasma micro RNA s in rhesus monkeys. Aging Cell. 2017;16:1200–1203. doi: 10.1111/acel.12636.
    1. Lee E.K., Jeong H.O., Bang E.J., Kim C.H., Mun J.Y., Noh S., Gim J.-A., Kim D.H., Chung K.W., Yu B.P. The involvement of serum exosomal miR-500-3p and miR-770-3p in aging: Modulation by calorie restriction. Oncotarget. 2018;9:5578. doi: 10.18632/oncotarget.23651.
    1. Godoy P.M., Barczak A.J., DeHoff P., Srinivasan S., Etheridge A., Galas D., Das S., Erle D.J., Laurent L.C. Comparison of reproducibility, accuracy, sensitivity, and specificity of miRNA quantification platforms. Cell Rep. 2019;29:4212–4222.e5. doi: 10.1016/j.celrep.2019.11.078.
    1. Sticht C., De La Torre C., Parveen A., Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13:e0206239. doi: 10.1371/journal.pone.0206239.
    1. Ding J., Li X., Hu H. TarPmiR: A new approach for microRNA target site prediction. Bioinformatics. 2016;32:2768–2775. doi: 10.1093/bioinformatics/btw318.
    1. Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–D452. doi: 10.1093/nar/gku1003.
    1. Likas A., Vlassis N., Verbeek J.J. The global k-means clustering algorithm. Pattern Recognit. 2003;36:451–461. doi: 10.1016/S0031-3203(02)00060-2.
    1. Dai S., Zhu X., Xia H. MiR-2467 is a Potential Marker for Prediction of Gestational Diabetes Mellitus in Pregnancy. Clin. Lab. 2020;66 doi: 10.7754/Clin.Lab.2020.200233.
    1. Liu F., Wei J., Hao Y., Lan J., Li W., Weng J., Li M., Su C., Li B., Mo M. Long intergenic non-protein coding RNA 02570 promotes nasopharyngeal carcinoma progression by adsorbing microRNA miR-4649-3p thereby upregulating both sterol regulatory element binding protein 1, and fatty acid synthase. Bioengineered. 2021;12:7119–7130. doi: 10.1080/21655979.2021.1979317.
    1. Liu H., Wang G. MicroRNA-301a-3p promotes triple-negative breast cancer progression through downregulating MEOX2. Exp. Ther. Med. 2021;22:945. doi: 10.3892/etm.2021.10377.
    1. Yuan W., Gao H., Wang G., Miao Y., Jiang K., Zhang K., Wu J. Higher miR-543 levels correlate with lower STK31 expression and longer pancreatic cancer survival. Cancer Med. 2020;9:9632–9640. doi: 10.1002/cam4.3559.
    1. Ismail S., Manaf R.A., Mahmud A. Comparison of time-restricted feeding and Islamic fasting: A scoping review. East. Mediterr. Health J. 2019;25:239–245. doi: 10.26719/emhj.19.011.
    1. Madkour M.I., El-Serafi A.T., Jahrami H.A., Sherif N.M., Hassan R.E., Awadallah S., Faris M.e.A.-I.E. Ramadan diurnal intermittent fasting modulates SOD2, TFAM, Nrf2, and sirtuins (SIRT1, SIRT3) gene expressions in subjects with overweight and obesity. Diabetes Res. Clin. Pract. 2019;155:107801. doi: 10.1016/j.diabres.2019.107801.
    1. Madkour M.I., Malhab L.J.B., Abdel-Rahman W.M., Abdelrahim D.N., Saber-Ayad M., Faris M.E. Ramadan Diurnal Intermittent Fasting Is Associated With Attenuated FTO Gene Expression in Subjects With Overweight and Obesity: A Prospective Cohort Study. Front. Nutr. 2022;8:741811. doi: 10.3389/fnut.2021.741811.
    1. Faris M.e.A.-I.E., Jahrami H.A., Obaideen A.A., Madkour M.I. Impact of diurnal intermittent fasting during Ramadan on inflammatory and oxidative stress markers in healthy people: Systematic review and meta-analysis. J. Nutr. Intermed. Metab. 2019;15:18–26. doi: 10.1016/j.jnim.2018.11.005.
    1. van Rooij E., Purcell A.L., Levin A.A. Developing microRNA therapeutics. Circ. Res. 2012;110:496–507. doi: 10.1161/CIRCRESAHA.111.247916.
    1. Chen C.Y., Chen J., He L., Stiles B.L. PTEN: Tumor Suppressor and Metabolic Regulator. Front. Endocrinol. 2018;9:338. doi: 10.3389/fendo.2018.00338.
    1. Tee A.R., Fingar D.C., Manning B.D., Kwiatkowski D.J., Cantley L.C., Blenis J. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc. Natl. Acad. Sci. USA. 2002;99:13571–13576. doi: 10.1073/pnas.202476899.
    1. Lim J.S., Gopalappa R., Kim S.H., Ramakrishna S., Lee M., Kim W.I., Kim J., Park S.M., Lee J., Oh J.H., et al. Somatic Mutations in TSC1 and TSC2 Cause Focal Cortical Dysplasia. Am. J. Hum. Genet. 2017;100:454–472. doi: 10.1016/j.ajhg.2017.01.030.
    1. Zachari M., Ganley I.G. The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 2017;61:585–596. doi: 10.1042/EBC20170021.
    1. Bagherniya M., Butler A.E., Barreto G.E., Sahebkar A. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Res. Rev. 2018;47:183–197. doi: 10.1016/j.arr.2018.08.004.

Source: PubMed

3
Subscribe