The roles of lipid and glucose metabolism in modulation of β-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease

Naoyuki Sato, Ryuichi Morishita, Naoyuki Sato, Ryuichi Morishita

Abstract

Diabetes is a risk factor for Alzheimer disease (AD). Apolipoprotein E (ApoE) and several genes related to AD have recently been identified by genome-wide association studies (GWAS) as being closely linked to lipid metabolism. Lipid metabolism and glucose-energy metabolism are closely related. Here, we review the emerging evidence regarding the roles of lipid and glucose metabolism in the modulation of β-amyloid, tau, and neurodegeneration during the pathogenesis of AD. Disruption of homeostasis of lipid and glucose metabolism affects production and clearance of β-amyloid and tau phosphorylation, and induces neurodegeneration. A more integrated understanding of the interactions among lipid, glucose, and protein metabolism is required to elucidate the pathogenesis of AD and to develop next-generation therapeutic options.

Keywords: Aβ; cholesterol; diabetes; neurodegeneration; tau.

Figures

Figure 1
Figure 1
The roles of lipid and glucose metabolism in the modulation of β-amyloid and tau during neurodegeneration and the pathogenesis of Alzheimer disease. Disruption of homeostasis of lipid and glucose metabolism affects production and clearance of β-amyloid and tau phosphorylation, and induces neurodegeneration.

References

    1. Andrade-Moraes C. H., Oliveira-Pinto A. V., Castro-Fonseca E., da Silva C. G., Guimaraes D. M., Szczupak D., et al. . (2013). Cell number changes in Alzheimer's disease relate to dementia, not to plaques and tangles. Brain 136, 3738–3752. 10.1093/brain/awt273
    1. Ashford J. W. (2004). APOE genotype effects on Alzheimer's disease onset and epidemiology. J. Mol. Neurosci. 23, 157–165. 10.1385/JMN:23:3:157
    1. Belinson H., Lev D., Masliah E., Michaelson D. M. (2008). Activation of the amyloid cascade in apolipoprotein E4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits. J. Neurosci. 28, 4690–4701. 10.1523/JNEUROSCI.5633-07.2008
    1. Boimel M., Grigoriadis N., Lourbopoulos A., Touloumi O., Rosenmann D., Abramsky O., et al. . (2009). Statins reduce the neurofibrillary tangle burden in a mouse model of tauopathy. J. Neuropathol. Exp. Neurol. 68, 314–325. 10.1097/NEN.0b013e31819ac3cb
    1. Braak H., Braak E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259. 10.1007/BF00308809
    1. Bu G. (2009). Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 10, 333–344. 10.1038/nrn2620
    1. Burns M. P., Igbavboa U., Wang L., Wood W. G., Duff K. (2006). Cholesterol distribution, not total levels, correlate with altered amyloid precursor protein processing in statin-treated mice. Neuromolecular Med. 8, 319–328. 10.1385/NMM:8:3:319
    1. Calero M., Tokuda T., Rostagno A., Kumar A., Zlokovic B., Frangione B., et al. . (1999). Functional and structural properties of lipid-associated apolipoprotein J (clusterin). Biochem. J. 344(Pt 2), 375–383. 10.1042/bj3440375
    1. Chapuis J., Hansmannel F., Gistelinck M., Mounier A., Van Cauwenberghe C., Kolen K. V., et al. . (2013). Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol. Psychiatry 18, 1225–1234. 10.1038/mp.2013.1
    1. Clodfelder-Miller B. J., Zmijewska A. A., Johnson G. V., Jope R. S. (2006). Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55, 3320–3325. 10.2337/db06-0485
    1. Cruchaga C., Karch C. M., Jin S. C., Benitez B. A., Cai Y., Guerreiro R., et al. . (2014). Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature 505, 550–554. 10.1038/nature12825
    1. Dowling N. M., Johnson S. C., Gleason C. E., Jagust W. J. (2015). The mediational effects of FDG hypometabolism on the association between cerebrospinal fluid biomarkers and neurocognitive function. Neuroimage 105, 357–368. 10.1016/j.neuroimage.2014.10.050
    1. Dreyling M. H., Martinez-Climent J. A., Zheng M., Mao J., Rowley J. D., Bohlander S. K. (1996). The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc. Natl. Acad. Sci. U.S.A. 93, 4804–4809. 10.1073/pnas.93.10.4804
    1. Erus G., Battapady H., Zhang T., Lovato J., Miller M. E., Williamson J. D., et al. . (2015). Spatial patterns of structural brain changes in type 2 diabetic patients and their longitudinal progression with intensive control of blood glucose. Diabetes Care 38, 97–104. 10.2337/dc14-1196
    1. Fassbender K., Simons M., Bergmann C., Stroick M., Lutjohann D., Keller P., et al. . (2001). Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 98, 5856–5861. 10.1073/pnas.081620098
    1. Filippini N., MacIntosh B. J., Hough M. G., Goodwin G. M., Frisoni G. B., Smith S. M., et al. . (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc. Natl. Acad. Sci. U.S.A. 106, 7209–7214. 10.1073/pnas.0811879106
    1. Ford M. G., Pearse B. M., Higgins M. K., Vallis Y., Owen D. J., Gibson A., et al. . (2001). Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055. 10.1126/science.291.5506.1051
    1. Galvagnion C., Buell A. K., Meisl G., Michaels T. C., Vendruscolo M., Knowles T. P., et al. . (2015). Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 11, 229–234. 10.1038/nchembio.1750
    1. García-Casares N., Berthier M. L., Jorge R. E., Gonzalez-Alegre P., Gutiérrez Cardo A., Rioja Villodres J., et al. . (2014). Structural and functional brain changes in middle-aged type 2 diabetic patients: a cross-sectional study. J. Alzheimers Dis. 40, 375–386. 10.3233/JAD-131736
    1. Glennon E. B., Whitehouse I. J., Miners J. S., Kehoe P. G., Love S., Kellett K. A., et al. . (2013). BIN1 is decreased in sporadic but not familial Alzheimer's disease or in aging. PLoS ONE 8:e78806. 10.1371/journal.pone.0078806
    1. Glöckner F., Ohm T. G. (2014). Tau pathology induces intraneuronal cholesterol accumulation. J. Neuropathol. Exp. Neurol. 73, 846–854. 10.1097/NEN.0000000000000103
    1. Goate A., Chartier-Harlin M. C., Mullan M., Brown J., Crawford F., Fidani L., et al. . (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706. 10.1038/349704a0
    1. Granold M., Moosmann B., Staib-Lasarzik I., Arendt T., Del Rey A., Engelhard K., et al. . (2015). High membrane protein oxidation in the human cerebral cortex. Redox Biol. 4, 200–207. 10.1016/j.redox.2014.12.013
    1. Guglielmotto M., Aragno M., Tamagno E., Vercellinatto I., Visentin S., Medana C., et al. . (2012). AGEs/RAGE complex upregulates BACE1 via NF-κB pathway activation. Neurobiol. Aging 33, 196.e13–196.e27. 10.1016/j.neurobiolaging.2010.05.026
    1. Hanger D. P., Hughes K., Woodgett J. R., Brion J. P., Anderton B. H. (1992). Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett. 147, 58–62. 10.1016/0304-3940(92)90774-2
    1. Heneka M. T., Fink A., Doblhammer G. (2015). Effect of pioglitazone medication on the incidence of dementia. Ann. Neurol. 78, 284–294. 10.1002/ana.24439
    1. Ho L., Qin W., Pompl P. N., Xiang Z., Wang J., Zhao Z., et al. . (2004). Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. FASEB J. 18, 902–904. 10.1096/fj.03-0978fje
    1. Holler C. J., Davis P. R., Beckett T. L., Platt T. L., Webb R. L., Head E., et al. . (2014). Bridging integrator 1 (BIN1) protein expression increases in the Alzheimer's disease brain and correlates with neurofibrillary tangle pathology. J. Alzheimers Dis. 42, 1221–1227. 10.3233/JAD-132450
    1. Hollingworth P., Harold D., Sims R., Gerrish A., Lambert J. C., Carrasquillo M. M., et al. . (2011). Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429–435. 10.1038/ng.803
    1. Iqbal K., Alonso A. C., Gong C. X., Khatoon S., Singh T. J., Grundke-Iqbal I. (1994). Mechanism of neurofibrillary degeneration in Alzheimer's disease. Mol. Neurobiol. 9, 119–123. 10.1007/BF02816111
    1. Iqbal K., Liu F., Gong C. X., Alonso Adel C., Grundke-Iqbal I. (2009). Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 118, 53–69. 10.1007/s00401-009-0486-3
    1. Irizarry M. C., Deng A., Lleo A., Berezovska O., Von Arnim C. A., Martin-Rehrmann M., et al. . (2004). Apolipoprotein E modulates γ-secretase cleavage of the amyloid precursor protein. J. Neurochem. 90, 1132–1143. 10.1111/j.1471-4159.2004.02581.x
    1. Itoh T., De Camilli P. (2006). BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim. Biophys. Acta 1761, 897–912. 10.1016/j.bbalip.2006.06.015
    1. Iwatsubo T., Odaka A., Suzuki N., Mizusawa H., Nukina N., Ihara Y. (1994). Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43). Neuron 13, 45–53. 10.1016/0896-6273(94)90458-8
    1. Jarrett J. T., Berger E. P., Lansbury P. T., Jr. (1993). The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693–4697. 10.1021/bi00069a001
    1. Jaworski T., Dewachter I., Lechat B., Gees M., Kremer A., Demedts D., et al. . (2011). GSK-3α/β kinases and amyloid production in vivo. Nature 480, E4–E5. discussion: E6. 10.1038/nature10615
    1. Ji Y., Gong Y., Gan W., Beach T., Holtzman D. M., Wisniewski T. (2003). Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer's disease patients. Neuroscience 122, 305–315. 10.1016/j.neuroscience.2003.08.007
    1. Jolivalt C. G., Lee C. A., Beiswenger K. K., Smith J. L., Orlov M., Torrance M. A., et al. . (2008). Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin. J. Neurosci. Res. 86, 3265–3274. 10.1002/jnr.21787
    1. Kalaria R. N. (2009). Neurodegenerative disease: diabetes, microvascular pathology and Alzheimer disease. Nat. Rev. Neurol. 5, 305–306. 10.1038/nrneurol.2009.72
    1. Kanatsu K., Morohashi Y., Suzuki M., Kuroda H., Watanabe T., Tomita T., et al. . (2014). Decreased CALM expression reduces Aβ42 to total Aβ ratio through clathrin-mediated endocytosis of γ-secretase. Nat. Commun. 5:3386. 10.1038/ncomms4386
    1. Kanekiyo T., Cirrito J. R., Liu C. C., Shinohara M., Li J., Schuler D. R., et al. . (2013). Neuronal clearance of amyloid-β by endocytic receptor LRP1. J. Neurosci. 33, 19276–19283. 10.1523/JNEUROSCI.3487-13.2013
    1. Ke Y. D., Delerue F., Gladbach A., Götz J., Ittner L. M. (2009). Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer's disease. PLoS ONE 4:e7917. 10.1371/journal.pone.0007917
    1. Kickstein E., Krauss S., Thornhill P., Rutschow D., Zeller R., Sharkey J., et al. . (2010). Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc. Natl. Acad. Sci. U.S.A. 107, 21830–21835. 10.1073/pnas.0912793107
    1. Kim B., Backus C., Oh S., Hayes J. M., Feldman E. L. (2009). Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150, 5294–5301. 10.1210/en.2009-0695
    1. Kim W. S., Li H., Ruberu K., Chan S., Elliott D. A., Low J. K., et al. . (2013). Deletion of Abca7 increases cerebral amyloid-β accumulation in the J20 mouse model of Alzheimer's disease. J. Neurosci. 33, 4387–4394. 10.1523/JNEUROSCI.4165-12.2013
    1. King D. S., Wilburn A. J., Wofford M. R., Harrell T. K., Lindley B. J., Jones D. W. (2003). Cognitive impairment associated with atorvastatin and simvastatin. Pharmacotherapy 23, 1663–1667. 10.1592/phco.23.15.1663.31953
    1. Koistinaho M., Lin S., Wu X., Koger D., Hanson J., Higgs R., et al. . (2004). Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nat. Med. 10, 719–726. 10.1038/nm1058
    1. Kojima C., Hashimoto A., Yabuta I., Hirose M., Hashimoto S., Kanaho Y., et al. . (2004). Regulation of Bin1 SH3 domain binding by phosphoinositides. EMBO J. 23, 4413–4422. 10.1038/sj.emboj.7600442
    1. Kopf D., Frölich L. (2009). Risk of incident Alzheimer's disease in diabetic patients: a systematic review of prospective trials. J. Alzheimers Dis. 16, 677–685. 10.3233/JAD-2009-1011
    1. Korinek M., Vyklicky V., Borovska J., Lichnerova K., Kaniakova M., Krausova B., et al. . (2015). Cholesterol modulates open probability and desensitization of NMDA receptors. J. Physiol. 593, 2279–2293. 10.1113/jphysiol.2014.288209
    1. Kurinami H., Sato N., Shinohara M., Takeuchi D., Takeda S., Shimamura M., et al. . (2008). Prevention of amyloid β-induced memory impairment by fluvastatin, associated with the decrease in amyloid β accumulation and oxidative stress in amyloid β injection mouse model. Int. J. Mol. Med. 21, 531–537. 10.3892/ijmm.21.5.531
    1. Lee E., Marcucci M., Daniell L., Weisz O. A., Ochoa G. C., Farsad K., et al. . (2002). Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297, 1193–1196. 10.1126/science.1071362
    1. Leoni V., Caccia C. (2015). The impairment of cholesterol metabolism in Huntington disease. Biochim. Biophys. Acta 1851, 1095–1105. 10.1016/j.bbalip.2014.12.018
    1. Liu L., Zhang K., Sandoval H., Yamamoto S., Jaiswal M., Sanz E., et al. . (2015). Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160, 177–190. 10.1016/j.cell.2014.12.019
    1. Liu Y., Liu F., Grundke-Iqbal I., Iqbal K., Gong C. X. (2009). Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer's disease. J. Neurochem. 111, 242–249. 10.1111/j.1471-4159.2009.06320.x
    1. Lu F., Li X., Suo A. Q., Zhang J. W. (2010). Inhibition of tau hyperphosphorylation and β amyloid production in rat brain by oral administration of atorvastatin. Chin. Med. J. 123, 1864–1870.
    1. Macauley S. L., Stanley M., Caesar E. E., Yamada S. A., Raichle M. E., Perez R., et al. . (2015). Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J. Clin. Invest. 125, 2463–2467. 10.1172/JCI79742
    1. Maccioni R. B., Farías G., Morales I., Navarrete L. (2010). The revitalized tau hypothesis on Alzheimer's disease. Arch. Med. Res. 41, 226–231. 10.1016/j.arcmed.2010.03.007
    1. Maher P. A., Schubert D. R. (2009). Metabolic links between diabetes and Alzheimer's disease. Expert Rev. Neurother. 9, 617–630. 10.1586/ern.09.18
    1. Mairet-Coello G., Courchet J., Pieraut S., Courchet V., Maximov A., Polleux F. (2013). The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through Tau phosphorylation. Neuron 78, 94–108. 10.1016/j.neuron.2013.02.003
    1. Mandrekar-Colucci S., Karlo J. C., Landreth G. E. (2012). Mechanisms underlying the rapid peroxisome proliferator-activated receptor-γ-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer's disease. J. Neurosci. 32, 10117–10128. 10.1523/JNEUROSCI.5268-11.2012
    1. Mann D. M. (1991). The topographic distribution of brain atrophy in Alzheimer's disease. Acta Neuropathol. 83, 81–86. 10.1007/BF00294434
    1. Marquer C., Laine J., Dauphinot L., Hanbouch L., Lemercier-Neuillet C., Pierrot N., et al. . (2014). Increasing membrane cholesterol of neurons in culture recapitulates Alzheimer's disease early phenotypes. Mol. Neurodegener. 9:60. 10.1186/1750-1326-9-60
    1. Martins C., Hulková H., Dridi L., Dormoy-Raclet V., Grigoryeva L., Choi Y., et al. . (2015). Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model. Brain 138, 336–355. 10.1093/brain/awu355
    1. Matsuzaki T., Sasaki K., Tanizaki Y., Hata J., Fujimi K., Matsui Y., et al. . (2010). Insulin resistance is associated with the pathology of Alzheimer disease: the Hisayama study. Neurology 75, 764–770. 10.1212/WNL.0b013e3181eee25f
    1. McGuinness B., Craig D., Bullock R., Malouf R., Passmore P. (2014). Statins for the treatment of dementia. Cochrane Database Syst. Rev. 7:CD007514. 10.1002/14651858.cd007514.pub3
    1. Michikawa M. (2006). Role of cholesterol in amyloid cascade: cholesterol-dependent modulation of tau phosphorylation and mitochondrial function. Acta Neurol. Scand. Suppl. 185, 21–26. 10.1111/j.1600-0404.2006.00681.x
    1. Moore E. M., Mander A. G., Ames D., Kotowicz M. A., Carne R. P., Brodaty H., et al. . (2013). Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 36, 2981–2987. 10.2337/dc13-0229
    1. Moran C., Phan T. G., Chen J., Blizzard L., Beare R., Venn A., et al. . (2013). Brain atrophy in type 2 diabetes: regional distribution and influence on cognition. Diabetes Care 36, 4036–4042. 10.2337/dc13-0143
    1. Morris J. C., Roe C. M., Xiong C., Fagan A. M., Goate A. M., Holtzman D. M., et al. . (2010). APOE predicts amyloid-β but not tau Alzheimer pathology in cognitively normal aging. Ann. Neurol. 67, 122–131. 10.1002/ana.21843
    1. Morris J. K., Vidoni E. D., Honea R. A., Burns J. M. (2014). Impaired glycemia increases disease progression in mild cognitive impairment. Neurobiol. Aging 35, 585–589. 10.1016/j.neurobiolaging.2013.09.033
    1. Ng T. P., Feng L., Yap K. B., Lee T. S., Tan C. H., Winblad B. (2014). Long-term metformin usage and cognitive function among older adults with diabetes. J. Alzheimers Dis. 41, 61–68. 10.3233/JAD-131901
    1. Ngandu T., Lehtisalo J., Solomon A., Levälahti E., Ahtiluoto S., Antikainen R., et al. . (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385, 2255–2263. 10.1016/S0140-6736(15)60461-5
    1. Norris S. E., Friedrich M. G., Mitchell T. W., Truscott R. J., Else P. L. (2015). Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease. Neurobiol. Aging 36, 1659–1669. 10.1016/j.neurobiolaging.2015.01.002
    1. Ohm T. G., Meske V. (2006). Cholesterol, statins and tau. Acta Neurol. Scand. Suppl. 185, 93–101. 10.1111/j.1600-0404.2006.00692.x
    1. Ohm T. G., Scharnagl H., März W., Bohl J. (1999). Apolipoprotein E isoforms and the development of low and high Braak stages of Alzheimer's disease-related lesions. Acta Neuropathol. 98, 273–280. 10.1007/s004010051080
    1. Olgiati P., Politis A. M., Papadimitriou G. N., De Ronchi D., Serretti A. (2011). Genetics of late-onset Alzheimer's disease: update from the alzgene database and analysis of shared pathways. Int. J. Alzheimers Dis. 2011:832379. 10.4061/2011/832379
    1. Orsi A., Sherman O., Woldeselassie Z. (2001). Simvastatin-associated memory loss. Pharmacotherapy 21, 767–769. 10.1592/phco.21.7.767.34577
    1. Ostrowski S. M., Wilkinson B. L., Golde T. E., Landreth G. (2007). Statins reduce amyloid-β production through inhibition of protein isoprenylation. J. Biol. Chem. 282, 26832–26844. 10.1074/jbc.M702640200
    1. Ott A., Stolk R. P., van Harskamp F., Pols H. A., Hofman A., Breteler M. M. (1999). Diabetes mellitus and the risk of dementia: the rotterdam study. Neurology 53, 1937–1942. 10.1212/WNL.53.9.1937
    1. Papadopoulos P., Tong X. K., Hamel E. (2014). Selective benefits of simvastatin in bitransgenic APPSwe, Ind/TGF-β1 mice. Neurobiol. Aging 35, 203–212. 10.1016/j.neurobiolaging.2013.07.010
    1. Perluigi M., Di Domenico F., Butterfield D. A. (2015). mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol. Dis. 10.1016/j.nbd.2015.03.014. [Epub ahead of print].
    1. Phiel C. J., Wilson C. A., Lee V. M., Klein P. S. (2003). GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. Nature 423, 435–439. 10.1038/nature01640
    1. Qu Z., Jiao Z., Sun X., Zhao Y., Ren J., Xu G. (2011). Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res. 1383, 300–306. 10.1016/j.brainres.2011.01.084
    1. Raber J., Wong D., Yu G. Q., Buttini M., Mahley R. W., Pitas R. E., et al. . (2000). Apolipoprotein E and cognitive performance. Nature 404, 352–354. 10.1038/35006165
    1. Ramanathan A., Nelson A. R., Sagare A. P., Zlokovic B. V. (2015). Impaired vascular-mediated clearance of brain amyloid β in Alzheimer's disease: the role, regulation and restoration of LRP1. Front. Aging Neurosci. 7:136. 10.3389/fnagi.2015.00136
    1. Reed B., Villeneuve S., Mack W., DeCarli C., Chui H. C., Jagust W. (2014). Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 71, 195–200. 10.1001/jamaneurol.2013.5390
    1. Refolo L. M., Malester B., LaFrancois J., Bryant-Thomas T., Wang R., Tint G. S., et al. . (2000). Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7, 321–331. 10.1006/nbdi.2000.0304
    1. Reiman E. M., Chen K., Liu X., Bandy D., Yu M., Lee W., et al. . (2009). Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 106, 6820–6825. 10.1073/pnas.0900345106
    1. Roberts R. O., Knopman D. S., Przybelski S. A., Mielke M. M., Kantarci K., Preboske G. M., et al. . (2014). Association of type 2 diabetes with brain atrophy and cognitive impairment. Neurology 82, 1132–1141. 10.1212/WNL.0000000000000269
    1. Saher G., Stumpf S. K. (2015). Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim. Biophys. Acta 1851, 1083–1094. 10.1016/j.bbalip.2015.02.010
    1. Sato N., Morishita R. (2013a). Plasma aβ: a possible missing link between Alzheimer disease and diabetes. Diabetes 62, 1005–1006. 10.2337/db12-1549
    1. Sato N., Morishita R. (2013b). Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: short- and long-term modification by non-genetic risk factors. Front. Aging Neurosci. 5:64. 10.3389/fnagi.2013.00064
    1. Sato N., Morishita R. (2014). Brain alterations and clinical symptoms of dementia in diabetes: aβ/τ-dependent and independent mechanisms. Front. Endocrinol. (Lausanne) 5:143. 10.3389/fendo.2014.00143
    1. Sato N., Shinohara M., Rakugi H., Morishita R. (2012). Dual effects of statins on Aβ metabolism: upregulation of the degradation of APP-CTF and Aβ clearance. Neurodegener. Dis. 10, 305–308. 10.1159/000334534
    1. Serenó L., Coma M., Rodríguez M., Sánchez-Ferrer P., Sánchez M. B., Gich I., et al. . (2009). A novel GSK-3β inhibitor reduces Alzheimer's pathology and rescues neuronal loss in vivo. Neurobiol. Dis. 35, 359–367. 10.1016/j.nbd.2009.05.025
    1. Sherrington R., Rogaev E. I., Liang Y., Rogaeva E. A., Levesque G., Ikeda M., et al. . (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760. 10.1038/375754a0
    1. Shibuya Y., Niu Z., Bryleva E. Y., Harris B. T., Murphy S. R., Kheirollah A., et al. . (2015). Acyl-coenzyme A:cholesterol acyltransferase 1 blockage enhances autophagy in the neurons of triple transgenic Alzheimer's disease mouse and reduces human P301L-tau content at the presymptomatic stage. Neurobiol. Aging 36, 2248–2259. 10.1016/j.neurobiolaging.2015.04.002
    1. Shiiki T., Ohtsuki S., Kurihara A., Naganuma H., Nishimura K., Tachikawa M., et al. . (2004). Brain insulin impairs amyloid-β(1-40) clearance from the brain. J. Neurosci. 24, 9632–9637. 10.1523/JNEUROSCI.2236-04.2004
    1. Shinohara M., Sato N., Kurinami H., Takeuchi D., Takeda S., Shimamura M., et al. . (2010). Reduction of brain β-amyloid (Aβ) by fluvastatin, a hydroxymethylglutaryl-CoA reductase inhibitor, through increase in degradation of amyloid precursor protein C-terminal fragments (APP-CTFs) and Aβ clearance. J. Biol. Chem. 285, 22091–22102. 10.1074/jbc.M110.102277
    1. Shinohara M., Sato N., Shimamura M., Kurinami H., Hamasaki T., Chatterjee A., et al. . (2014). Possible modification of Alzheimer's disease by statins in midlife: interactions with genetic and non-genetic risk factors. Front. Aging Neurosci. 6:71. 10.3389/fnagi.2014.00071
    1. Sofola O., Kerr F., Rogers I., Killick R., Augustin H., Gandy C., et al. . (2010). Inhibition of GSK-3 ameliorates Aβ pathology in an adult-onset Drosophila model of Alzheimer's disease. PLoS Genet. 6:e1001087. 10.1371/journal.pgen.1001087
    1. Son S. M., Song H., Byun J., Park K. S., Jang H. C., Park Y. J., et al. . (2012). Accumulation of autophagosomes contributes to enhanced amyloidogenic APP processing under insulin-resistant conditions. Autophagy 8, 1842–1844. 10.4161/auto.21861
    1. Sparks D. L., Scheff S. W., Hunsaker J. C., III, Liu H., Landers T., Gross D. R. (1994). Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp. Neurol. 126, 88–94. 10.1006/exnr.1994.1044
    1. Starks E. J., O'Grady J. P., Hoscheidt S. M., Racine A. M., Carlsson C. M., Zetterberg H., et al. . (2015). Insulin resistance is associated with higher cerebrospinal fluid tau levels in asymptomatic APOEϵ4 carriers. J. Alzheimers Dis. 46, 525–533. 10.3233/JAD-150072
    1. Takeda S., Sato N., Uchio-Yamada K., Sawada K., Kunieda T., Takeuchi D., et al. . (2010). Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes. Proc. Natl. Acad. Sci. U.S.A. 107, 7036–7041. 10.1073/pnas.1000645107
    1. Tan M. S., Yu J. T., Tan L. (2013). Bridging integrator 1 (BIN1): form, function, and Alzheimer's disease. Trends Mol. Med. 19, 594–603. 10.1016/j.molmed.2013.06.004
    1. Tanaka N., Abe-Dohmae S., Iwamoto N., Fitzgerald M. L., Yokoyama S. (2011a). HMG-CoA reductase inhibitors enhance phagocytosis by upregulating ATP-binding cassette transporter A7. Atherosclerosis 217, 407–414. 10.1016/j.atherosclerosis.2011.06.031
    1. Tanaka N., Abe-Dohmae S., Iwamoto N., Yokoyama S. (2011b). Roles of ATP-binding cassette transporter A7 in cholesterol homeostasis and host defense system. J. Atheroscler. Thromb. 18, 274–281. 10.5551/jat.6726
    1. Thompson P. M., Hayashi K. M., de Zubicaray G., Janke A. L., Rose S. E., Semple J., et al. . (2003). Dynamics of gray matter loss in Alzheimer's disease. J. Neurosci. 23, 994–1005.
    1. Trachtenberg A. J., Filippini N., Cheeseman J., Duff E. P., Neville M. J., Ebmeier K. P., et al. . (2011). The effects of APOE on brain activity do not simply reflect the risk of Alzheimer's disease. Neurobiol. Aging 33, 618.e1–618.e13. 10.1016/j.neurobiolaging.2010.11.01
    1. Vekrellis K., Ye Z., Qiu W. Q., Walsh D., Hartley D., Chesneau V., et al. . (2000). Neurons regulate extracellular levels of amyloid β-protein via proteolysis by insulin-degrading enzyme. J. Neurosci. 20, 1657–1665.
    1. Verghese P. B., Castellano J. M., Garai K., Wang Y., Jiang H., Shah A., et al. . (2013). ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc. Natl. Acad. Sci. U.S.A. 110:E1807–E1816. 10.1073/pnas.1220484110
    1. Verghese P. B., Castellano J. M., Holtzman D. M. (2011). Apolipoprotein E in Alzheimer's disease and other neurological disorders. Lancet Neurol. 10, 241–252. 10.1016/S1474-4422(10)70325-2
    1. Wagstaff L. R., Mitton M. W., Arvik B. M., Doraiswamy P. M. (2003). Statin-associated memory loss: analysis of 60 case reports and review of the literature. Pharmacotherapy 23, 871–880. 10.1592/phco.23.7.871.32720
    1. Wang Y., Cella M., Mallinson K., Ulrich J. D., Young K. L., Robinette M. L., et al. . (2015). TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160, 1061–1071. 10.1016/j.cell.2015.01.049
    1. Weinstein G., Maillard P., Himali J. J., Beiser A. S., Au R., Wolf P. A., et al. . (2015). Glucose indices are associated with cognitive and structural brain measures in young adults. Neurology 84, 2329–2337. 10.1212/WNL.0000000000001655
    1. Winkler E. A., Nishida Y., Sagare A. P., Rege S. V., Bell R. D., Perlmutter D., et al. . (2015). GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521–530. 10.1038/nn.3966
    1. Wisdom N. M., Callahan J. L., Hawkins K. A. (2011). The effects of apolipoprotein E on non-impaired cognitive functioning: a meta-analysis. Neurobiol. Aging 32, 63–74. 10.1016/j.neurobiolaging.2009.02.003
    1. Xiao Q., Gil S. C., Yan P., Wang Y., Han S., Gonzales E., et al. . (2012). Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis. J. Biol. Chem. 287, 21279–21289. 10.1074/jbc.M111.338376
    1. Yang S. D., Song J. S., Yu J. S., Shiah S. G. (1993). Protein kinase FA/GSK-3 phosphorylates tau on Ser235-Pro and Ser404-Pro that are abnormally phosphorylated in Alzheimer's disease brain. J. Neurochem. 61, 1742–1747. 10.1111/j.1471-4159.1993.tb09811.x
    1. Yu J. T., Tan L. (2012). The role of clusterin in Alzheimer's disease: pathways, pathogenesis, and therapy. Mol. Neurobiol. 45, 314–326. 10.1007/s12035-012-8237-1
    1. Zhou Y., Hayashi I., Wong J., Tugusheva K., Renger J. J., Zerbinatti C. (2014). Intracellular clusterin interacts with brain isoforms of the bridging integrator 1 and with the microtubule-associated protein Tau in Alzheimer's disease. PLoS ONE 9:e103187. 10.1371/journal.pone.0103187
    1. Zhu Y., Shan X., Yuzwa S. A., Vocadlo D. J. (2014). The emerging link between O-GlcNAc and Alzheimer disease. J. Biol. Chem. 289, 34472–34481. 10.1074/jbc.R114.601351

Source: PubMed

3
Subscribe