Prophylactic NAC promoted hematopoietic reconstitution by improving endothelial cells after haploidentical HSCT: a phase 3, open-label randomized trial

Yu Wang, Yuan Kong, Hong-Yan Zhao, Yuan-Yuan Zhang, Ya-Zhe Wang, Lan-Ping Xu, Xiao-Hui Zhang, Kai-Yan Liu, Xiao-Jun Huang, Yu Wang, Yuan Kong, Hong-Yan Zhao, Yuan-Yuan Zhang, Ya-Zhe Wang, Lan-Ping Xu, Xiao-Hui Zhang, Kai-Yan Liu, Xiao-Jun Huang

Abstract

Background: Poor graft function (PGF) or prolonged isolated thrombocytopenia (PT), which are characterized by pancytopenia or thrombocytopenia, have become serious complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Our previous single-arm trial suggests that N-acetyl-L-cysteine (NAC) prophylaxis reduced PGF or PT after allo-HSCT. Therefore, an open-label, randomized, phase 3 trial was performed to investigate the efficacy and tolerability of NAC prophylaxis to reduce PGF or PT after allo-HSCT.

Methods: A phase 3, open-label randomized trial was performed. Based on the percentage of CD34+VEGFR2 (CD309)+ endothelial cells (ECs) in bone marrow (BM) detected by flow cytometry at 14 days before conditioning, patients aged 15 to 60 years with acute leukemia undergoing haploidentical HSCT were categorized as low-risk (EC ≥ 0.1%) or high-risk (EC < 0.1%); patients at high risk were randomly assigned (2:1) to receive NAC prophylaxis or nonprophylaxis. The primary endpoint was PGF and PT incidence at +60 days post-HSCT.

Results: Between April 18, 2019, and June 24, 2021, 120 patients with BM EC <0.1% were randomly assigned for NAC (group A, N = 80) or nonprophylaxis (group B, N = 40), and 105 patients with EC≥0.1% (group C) were also analyzed. The +60 days incidence of PGF and PT was 7.5% (95% CI, 1.7 to 13.3%) and 22.5% (95% CI, 9.1 to 35.9%) in group A and group B (hazard ratio, 0.317; 95% CI, 0.113 to 0.890; P = 0.021) and 11.4% (95% CI, 5.2 to 17.6%) in group C (hazard ratio, 0.643; 95% CI, 0.242 to 1.715; P = 0.373). Consistently, NAC prophylaxis gradually improved BM ECs and CD34+ cells in group A, whereas reduced their reactive oxygen species (ROS) levels post-HSCT. Within 60 days post-HSCT, the most common grade 3 to 5 adverse events for the NAC and control groups were infections (19/80 [24%] vs. 10/40 [25%]) and gastrointestinal adverse events (16/80 [20%] vs. 7/40 [18%]). There were no treatment-related deaths.

Conclusions: N-Acetyl-L-cysteine prophylaxis can prevent the occurrence of poor hematopoietic function and is well tolerated in haploidentical HSCT. It may offer a potential pathogenesis-oriented therapeutic approach for patients with poor hematopoietic function.

Trial registration: This trial was registered at ClinicalTrials.gov as #NCT03967665.

Keywords: Allogeneic hematopoietic stem cell transplantation; Bone marrow microenvironment; Endothelial cells; N-Acetyl-L-cysteine; Poor hematopoietic reconstitution.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Trial flow chart
Fig. 2
Fig. 2
Cumulative incidence of PGF or PT (a), overall survival (b), and leukemia-free survival (c)
Fig. 3
Fig. 3
Prophylactic NAC improved BM ECs and CD34+ cells in EC<0.1% group post-HSCT. The dynamic reconstitution (left panel) and statistical analysis (right panel) of a BM EC percentage, b EC ROS level, c CD34+ cell percentage, and d CD34+ cell ROS level were analyzed by flow cytometry among the three groups before randomization (−24 days), at the time of conditioning initiation (−10 days), and +14, +30, +60 days post-HSCT. The data are expressed as the mean and SEM. P ≤ 0.05 was considered statistically significant and values are provided in the figure (*P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001)

References

    1. Langer CJ, Gadgeel SM, Borghaei H, Papadimitrakopoulou VA, Patnaik A, Powell SF, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17(11):1497–1508.
    1. Paz-Ares L, Ciuleanu TE, Cobo M, Schenker M, Zurawski B, Menezes J, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(2):198–211.
    1. Kong Y. Poor graft function after allogeneic hematopoietic stem cell transplantation-an old complication with new insights() Semin Hematol. 2019;56(3):215–220.
    1. Kong Y, Shi MM, Zhang YY, Cao XN, Wang Y, Zhang XH, et al. N-acetyl-L-cysteine improves bone marrow endothelial progenitor cells in prolonged isolated thrombocytopenia patients post allogeneic hematopoietic stem cell transplantation. Am J Hematol. 2018;93(7):931–942.
    1. Kong Y, Wang Y, Zhang YY, Shi MM, Mo XD, Sun YQ, et al. Prophylactic oral NAC reduced poor hematopoietic reconstitution by improving endothelial cells after haploidentical transplantation. Blood Adv. 2019;3(8):1303–1317.
    1. Lyu ZS, Cao XN, Wen Q, Mo XD, Zhao HY, Chen YH, et al. Autophagy in endothelial cells regulates their haematopoiesis-supporting ability. EBioMedicine. 2020;53:102677.
    1. Shi MM, Kong Y, Song Y, Sun YQ, Wang Y, Zhang XH, et al. Atorvastatin enhances endothelial cell function in posttransplant poor graft function. Blood. 2016;128(25):2988–2999.
    1. Zhao HY, Lyu ZS, Duan CW, Song Y, Han TT, Mo XD, et al. An unbalanced monocyte macrophage polarization in the bone marrow microenvironment of patients with poor graft function after allogeneic haematopoietic stem cell transplantation. Br J Haematol. 2018;182(5):679–692.
    1. Zhao HY, Zhang YY, Xing T, Tang SQ, Wen Q, Lyu ZS, et al. M2 macrophages, but not M1 macrophages, support megakaryopoiesis by upregulating PI3K-AKT pathway activity. Signal Transduct Target Ther. 2021;6(1):234.
    1. Brodsky RA, Jones RJ. Aplastic anaemia. Lancet. 2005;365(9471):1647–1656.
    1. Young NS. Aplastic Anemia. N Engl J Med. 2018;379(17):1643–1656.
    1. Ades L, Itzykson R, Fenaux P. Myelodysplastic syndromes. Lancet. 2014;383(9936):2239–2252.
    1. Cazzola M. Myelodysplastic syndromes. N Engl J Med. 2020;383(14):1358–1374.
    1. Xing T, Lyu ZS, Duan CW, Wen Q, Zhao HY, Tang SQ, et al. Endothelial cell dysfunction is involved in the progression of myelodysplastic syndromes. 63rd Annual Meeting of the American Society of Hematology; Blood. 2021; 2021:3668.
    1. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075–1079.
    1. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–334.
    1. Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017;17(9):573–590.
    1. Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019;20(5):303–320.
    1. Yu VW, Scadden DT. Hematopoietic stem cell and its bone marrow niche. Curr Top Dev Biol. 2016;118:21–44.
    1. Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell. 2009;4(3):263–274.
    1. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–462.
    1. Fadini GP, Coracina A, Baesso I, Agostini C, Tiengo A, Avogaro A, et al. Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke. 2006;37(9):2277–2282.
    1. Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532(7599):323–328.
    1. Chute JP, Muramoto GG, Salter AB, Meadows SK, Rickman DW, Chen B, et al. Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of lethally irradiated mice. Blood. 2007;109(6):2365–2372.
    1. Salter AB, Meadows SK, Muramoto GG, Himburg H, Doan P, Daher P, et al. Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood. 2009;113(9):2104–2107.
    1. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353(10):999–1007.
    1. Fadini GP, Mehta A, Dhindsa DS, Bonora BM, Sreejit G, Nagareddy P, et al. Circulating stem cells and cardiovascular outcomes: from basic science to the clinic. Eur Heart J. 2020;41(44):4271–4282.
    1. Kong Y, Cao XN, Zhang XH, Shi MM, Lai YY, Wang Y, et al. Atorvastatin enhances bone marrow endothelial cell function in corticosteroid-resistant immune thrombocytopenia patients. Blood. 2018;131(11):1219–1233.
    1. Zhang XH, Chen J, Han MZ, Huang H, Jiang EL, Jiang M, et al. The consensus from The Chinese Society of Hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. J Hematol Oncol. 2021;14(1):145.
    1. Wang Y, Liu QF, Lin R, Yang T, Xu YJ, Mo XD, et al. Optimizing antithymocyte globulin dosing in haploidentical hematopoietic cell transplantation: long-term follow-up of a multicenter, randomized controlled trial. Sci Bull. 2021;24:2498–2505.
    1. Sun YQ, He GL, Chang YJ, Xu LP, Zhang XH, Han W, et al. The incidence, risk factors, and outcomes of primary poor graft function after unmanipulated haploidentical stem cell transplantation. Ann Hematol. 2015;94(10):1699–1705.
    1. Kim DH, Sohn SK, Jeon SB, Baek JH, Kim JG, Lee NY, et al. Prognostic significance of platelet recovery pattern after allogeneic HLA-identical sibling transplantation and its association with severe acute GVHD. Bone Marrow Transplant. 2006;37(1):101–108.
    1. Tang FF, Sun YQ, Mo XD, Lv M, Chen YH, Wang Y, et al. Incidence, risk factors, and outcomes of primary prolonged isolated thrombocytopenia after haploidentical hematopoietic stem cell transplant. Biol Blood Marrow Transplant. 2020;26(8):1452–1458.
    1. Guo H, Chang YJ, Hong Y, Xu LP, Wang Y, Zhang XH, et al. Dynamic immune profiling identifies the stronger graft-versus-leukemia (GVL) effects with haploidentical allografts compared to HLA-matched stem cell transplantation. Cell Mol Immunol. 2021;18(5):1172–1185.
    1. Wang Y, Chen H, Chen J, Han M, Hu J, Jiong H, et al. The consensus on the monitoring, treatment, and prevention of leukemia relapse after allogeneic hematopoietic stem cell transplantation in China. Cancer Lett. 2018;438:63–75.
    1. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995;15(6):825–828.
    1. Jones RJ, Lee KS, Beschorner WE, Vogel VG, Grochow LB, Braine HG, et al. Venoocclusive disease of the liver following bone marrow transplantation. Transplantation. 1987;44(6):778–783.
    1. Sun YQ, Wang Y, Zhang XH, Xu LP, Liu KY, Yan CH, et al. Virus reactivation and low dose of CD34+ cell, rather than haploidentical transplantation, were associated with secondary poor graft function within the first 100 days after allogeneic stem cell transplantation. Ann Hematol. 2019;98(8):1877–1883.
    1. Austin PC, Fine JP. Practical recommendations for reporting Fine-Gray model analyses for competing risk data. Stat Med. 2017;36(27):4391–4400.
    1. Armand P, Kim HT, Logan BR, Wang Z, Alyea EP, Kalaycio ME, et al. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood. 2014;123(23):3664–3671.
    1. El-Serafi I, Remberger M, El-Serafi A, Benkessou F, Zheng W, Martell E, et al. The effect of N-acetyl-l-cysteine (NAC) on liver toxicity and clinical outcome after hematopoietic stem cell transplantation. Sci Rep. 2018;8(1):8293.
    1. Sjoo F, Aschan J, Barkholt L, Hassan Z, Ringden O, Hassan M. N-acetyl-L-cysteine does not affect the pharmacokinetics or myelosuppressive effect of busulfan during conditioning prior to allogeneic stem cell transplantation. Bone Marrow Transplant. 2003;32(4):349–354.
    1. Hu L, Yin X, Zhang Y, Pang A, Xie X, Yang S, et al. Radiation-induced bystander effects impair transplanted human hematopoietic stem cells via oxidative DNA damage. Blood. 2021;137(24):3339–3350.

Source: PubMed

3
Subscribe