Lenalidomide-based induction and maintenance in elderly newly diagnosed multiple myeloma patients: updated results of the EMN01 randomized trial

Sara Bringhen, Mattia D'Agostino, Laura Paris, Stelvio Ballanti, Norbert Pescosta, Stefano Spada, Sara Pezzatti, Mariella Grasso, Delia Rota-Scalabrini, Luca De Rosa, Vincenzo Pavone, Giulia Gazzera, Sara Aquino, Marco Poggiu, Armando Santoro, Massimo Gentile, Luca Baldini, Maria Teresa Petrucci, Patrizia Tosi, Roberto Marasca, Claudia Cellini, Antonio Palumbo, Patrizia Falco, Roman Hájek, Mario Boccadoro, Alessandra Larocca, Sara Bringhen, Mattia D'Agostino, Laura Paris, Stelvio Ballanti, Norbert Pescosta, Stefano Spada, Sara Pezzatti, Mariella Grasso, Delia Rota-Scalabrini, Luca De Rosa, Vincenzo Pavone, Giulia Gazzera, Sara Aquino, Marco Poggiu, Armando Santoro, Massimo Gentile, Luca Baldini, Maria Teresa Petrucci, Patrizia Tosi, Roberto Marasca, Claudia Cellini, Antonio Palumbo, Patrizia Falco, Roman Hájek, Mario Boccadoro, Alessandra Larocca

Abstract

n the EMN01 trial, the addition of an alkylator (melphalan or cyclophosphamide) to lenalidomide-steroid induction therapy was prospectively evaluated in transplant-ineligible patients with multiple myeloma. After induction, patients were randomly assigned to maintenance treatment with lenalidomide alone or with prednisone continuously. The analysis presented here (median follow-up of 71 months) is focused on maintenance treatment and on subgroup analyses defined according to the International Myeloma Working Group Frailty Score. Of the 654 evaluable patients, 217 were in the lenalidomide-dexamethasone arm, 217 in the melphalan-prednisone-lenalidomide arm and 220 in the cyclophosphamide-prednisone-lenalidomide arm. With regards to the Frailty Score, 284 (43%) patients were fit, 205 (31%) were intermediate-fit and 165 (25%) were frail. After induction, 402 patients were eligible for maintenance therapy (lenalidomide arm, n=204; lenalidomide-prednisone arm, n=198). After a median duration of maintenance of 22.0 months, progression-free survival from the start of maintenance was 22.2 months with lenalidomide-prednisone vs 18.6 months with lenalidomide (hazard ratio 0.85, P=0.14), with no differences across frailty subgroups. The most frequent grade ≥3 toxicity was neutropenia (10% of lenalidomide-prednisone and 21% of lenalidomide patients; P=0.001). Grade ≥3 non-hematologic adverse events were rare (<15%). In fit patients, melphalan-prednisone-lenalidomide significantly prolonged progression-free survival compared to cyclophosphamide-prednisone-lenalidomide (hazard ratio 0.72, P=0.05) and lenalidomide-dexamethasone (hazard ratio 0.72, P=0.04). Likewise, a trend towards a better overall survival was noted for patients treated with melphalan-prednisone-lenalidomide or cyclophosphamide-prednisone-lenalidomide, as compared to lenalidomide-dexamethasone. No differences were observed in intermediate-fit and frail patients. This analysis showed positive outcomes of maintenance with lenalidomide-based regimens, with a good safety profile. For the first time, we showed that fit patients benefit from a full-dose triplet regimen, while intermediate-fit and frail patients benefit from gentler regimens. ClinicalTrials.gov registration number: NCT01093196.

Copyright© 2020 Ferrata Storti Foundation.

Figures

Figure 1
Figure 1
Survival outcomes according to induction treatment arm. (A) Progression-free survival, (B) time to next treatment, (C) progression-free survival 2 and (D) overall survival are shown. All time to events were calculated from the time of random assignment to induction treatment arms. MPR: melphalan-prednisone-lenalidomide; CPR: cyclophosphamide-prednisone-lenalidomide; Rd: lenalidomide-dexamethasone; PFS: progression-free survival; PFS-2: progression-free survival 2; TNT: time to next treatment; OS: overall survival; HR: hazard ratio; CI: confidence interval; P: P value.
Figure 2
Figure 2
Post-hoc analysis according to frailty status in patients treated with different induction treatments. (A, B) Progression-free survival (PFS) (A) and overall survival (OS) (B) in fit patients according to treatment arm. (C, D) PFS (C) and OS (D) in intermediate-fit patients according to treatment arm. (E; F) PFS (E) and OS (F) in frail patients according to treatment arm. All time to events were calculated from the time of random assignment to induction treatment arms. MPR: melphalan-prednisone-lenalidomide; CPR: cyclophosphamide-prednisone-lenalidomide; Rd: lenalidomide-dexamethasone; HR: hazard ratio; CI: confidence interval; P: P value.
Figure 3
Figure 3
Survival outcomes according to maintenance treatment arm. (A) Progression-free survival, (B) time to next treatment, (C) progression-free survival 2 and (D) overall survival. All time to events were calculated from the time of random assignment to maintenance treatment arms (_m). R: lenalidomide; RP: lenalidomide-prednisone; PFS: progression-free survival; PFS-2: progression-free survival 2; TNT: time to next treatment; OS: overall survival; _m: from the random assignment to maintenance treatment arms; HR: hazard ratio; CI: confidence interval; P: P value.
Figure 4
Figure 4
Post-hoc analysis according to frailty status in patients treated with different maintenance treatments. (A, B) Progression-free survival (PFS) (A) and overall survival (OS) (B) in fit patients according to treatment arm. (C, D) PFS (C) and OS (D) in intermediate-fit patients according to treatment arm. (E, F) PFS (E) and OS (F) in frail patients according to treatment arm. All time to events were calculated from the time of random assignment to maintenance treatment arms (_m). R: lenalidomide; RP: lenalidomide-prednisone; PFS_m: progression-free survival from the random assignment to maintenance treatment arms; OS_m: overall survival from the random assignment to maintenance treatment arms; HR: hazard ratio; CI: confidence interval; P: P value.

References

    1. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046-1060.
    1. Palumbo A, Bringhen S, Caravita T, et al. Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomised controlled trial. Lancet. 2006;367(9513):825-831.
    1. San Miguel JF, Schlag R, Khuageva NK, et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med. 2008;359(9):906-917.
    1. Benboubker L, Dimopoulos MA, Dispenzieri A, et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med. 2014;371(10):906-917.
    1. Palumbo A, Hajek R, Delforge M, et al. Continuous lenalidomide treatment for newly diagnosed multiple myeloma. N Engl J Med. 2012;366(19):1759-1769.
    1. Jackson GH, Davies FE, Pawlyn C, et al. Lenalidomide maintenance versus observation for patients with newly diagnosed multiple myeloma (Myeloma XI): a multi-centre, open-label, randomised, phase 3 trial. Lancet Oncol. 2019;20(1):57-73.
    1. Gay F, Oliva S, Petrucci MT, et al. Chemotherapy plus lenalidomide versus autologous transplantation, followed by lenalidomide plus prednisone versus lenalidomide maintenance, in patients with multiple myeloma: a randomised, multi-centre, phase 3 trial. Lancet Oncol. 2015;16(16):1617-1629.
    1. Larocca A, Dold SM, Zweegman S, et al. Patient-centered practice in elderly myeloma patients: an overview and consensus from the European Myeloma Network (EMN). Leukemia 2018;32(8):1697-1712.
    1. Salvini M, D’Agostino M, Bonello F, Boccadoro M, Bringhen S. Determining treatment intensity in elderly patients with multiple myeloma. Expert Rev Anticancer Ther. 2018;18(9):917-930.
    1. Magarotto V, Bringhen S, Offidani M, et al. Triplet vs. doublet lenalidomide-containing regimens for the treatment of elderly patients with newly diagnosed multiple myeloma. Blood. 2016;127(9):1102-1108.
    1. Palumbo A, Bringhen S, Mateos M-V, et al. Geriatric assessment predicts survival and toxicities in elderly myeloma patients: an International Myeloma Working Group report. Blood. 2015;125(13):2068-2074.
    1. Franssen LE, Nijhof IS, Bjorklund CC, et al. Lenalidomide combined with low-dose cyclophosphamide and prednisone modulates Ikaros and Aiolos in lymphocytes, resulting in immunostimulatory effects in lenalidomide-refractory multiple myeloma patients. Oncotarget. 2018;9(74):34009-34021.
    1. Nakagawa M, Terashima T, D’yachkova Y, Bondy GP, Hogg JC, van Eeden SF. Glucocorticoid-induced granulocytosis: contribution of marrow release and demargination of intravascular granulocytes. Circulation. 1998;98(21):2307-2313.
    1. Stewart AK, Rajkumar SV, Dimopoulos MA, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142-152.
    1. Jakubowiak AJ, Dytfeld D, Griffith KA, et al. A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma. Blood. 2012;120(9): 1801-1809.
    1. Facon T, Hulin C, Dimopoulos MA, et al. A frailty scale predicts outcomes of patients with newly diagnosed multiple myeloma who are ineligible for transplant treated with continuous lenalidomide plus low-dose dexamethasone on the FIRST trial. Blood. 2015;126(23). Abstract #4239 [ASH 2015 57th Meeting].
    1. Facon T, Dimopoulos MA, Dispenzieri A, et al. Final analysis of survival outcomes in the phase 3 FIRST trial of up-front treatment for multiple myeloma. Blood. 2018;131(3):301-310.
    1. Facon T, Kumar SK, Plesner T, et al. Phase 3 randomized study of daratumumab plus lenalidomide and dexamethasone (D-Rd) versus lenalidomide and dexamethasone (Rd) in patients with newly diagnosed multiple myeloma (NDMM) ineligible for transplant (MAIA). Blood. 2018;132(Suppl 1). Abstract #LBA-2 [ASH 2018 60th Meeting].
    1. Larocca A, Salvini M, De Paoli L, et al. Efficacy and feasibility of dose/schedule-adjusted Rd-R vs. continuous Rd in elderly and intermediate-fit newly diagnosed multiple myeloma (NDMM) patients: RV-MM-PI-0752 phase III randomized study. Blood. 2018;132(Suppl 1). Abstract #305 [ASH 2018 60th Meeting].
    1. Durie BG, Hoering A, Sexton R, et al. Longer term follow up of the randomized phase III trial SWOG S0777: bortezomib, lenalidomide and dexamethasone vs. lenalidomide and dexamethasone in patients (pts) with previously untreated multiple myeloma without an intent for immediate autologous stem cell transplant (ASCT). Blood. 2018;132(Suppl 1). Abstract #1992 [ASH 2018 60th Meeting].
    1. Mateos M-V, Dimopoulos MA, Cavo M, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med. 2018;378(6):518-528.
    1. Ocio EM, Otero PR, Bringhen S, et al. Preliminary results from a phase I study of isatuximab (ISA) in combination with bortezomib, lenalidomide, dexamethasone (VRd) in patients with newly diagnosed multiple myeloma (NDMM) non-eligible for transplant. Blood. 2018;132(Suppl 1). Abstract #595 [ASH 2018 60th Meeting].
    1. Facon T, Kumar S, Plesner T, et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N Engl J Med. 2019;380(22):2104-2115.
    1. Dimopoulos MA, Mateos M-V, Cavo M, et al. One-year update of a phase 3 randomized study of daratumumab plus bortezomib, melphalan, and prednisone (D-VMP) versus bortezomib, melphalan, and prednisone (VMP) in patients (pts) with transplant-ineligible newly diagnosed multiple myeloma (NDMM): Alcyone. Blood. 2018;132(Suppl 1). Abstract #156 (ASH 2018 60th Meeting].

Source: PubMed

3
Subscribe