Linagliptin improved glycaemic control without weight gain or hypoglycaemia in patients with type 2 diabetes inadequately controlled by a combination of metformin and pioglitazone: a 24-week randomized, double-blind study

M Bajaj, R Gilman, S Patel, J Kempthorne-Rawson, D Lewis-D'Agostino, H-J Woerle, M Bajaj, R Gilman, S Patel, J Kempthorne-Rawson, D Lewis-D'Agostino, H-J Woerle

Abstract

Aims: To investigate the efficacy and safety of the dipeptidyl peptidase-4 inhibitor linagliptin in patients with Type 2 diabetes mellitus inadequately controlled by a combination of metformin and pioglitazone.

Methods: This was a multi-centre, phase 3, randomized, double-blind, placebo-controlled study comparing linagliptin 5 mg once daily (n = 183) and placebo (n = 89) as add-on to metformin and pioglitazone. The primary endpoint was the change from baseline in glycated haemoglobin (HbA1c ) after 24 weeks.

Results: The placebo-corrected adjusted mean (se) change in HbA1c from baseline to 24 weeks was -6 (1) mmol/mol [-0.57 (0.13)%] (P < 0.0001). In patients with baseline HbA1c ≥ 53 mmol/mol (7.0%), 32.4% of patients in the linagliptin group and 13.8% in the placebo group achieved HbA1c < 53 mmol/mol (7.0%) (odds ratio 2.94; P = 0.0033). The placebo-corrected adjusted mean (se) change from baseline in fasting plasma glucose at week 24 was -0.57 (0.26) mmol/l [-10.4 (4.7) mg/dl] (P = 0.0280). The incidence of serious adverse events was 2.2% with linagliptin and 3.4% with placebo. Investigator-defined hypoglycaemia occurred in 5.5% of the linagliptin group and 5.6% of the placebo group. No meaningful changes in mean body weight were noted for either group.

Conclusions: Linagliptin as add-on therapy to metformin and pioglitazone produced significant and clinically meaningful improvements in glycaemic control, without an additional risk of hypoglycaemia or weight gain (Clinical Trials Registry No: NCT 00996658).

Trial registration: ClinicalTrials.gov NCT00996658.

© 2014 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.

Figures

Figure 1
Figure 1
Patient allocation. FAS, full analysis set.
Figure 2
Figure 2
Adjusted mean change from baseline in HbA1c over time (full analysis set, last observation carried forward). Linagliptin 5 mg once daily (•); placebo (○).
Figure 3
Figure 3
Adjusted mean change from baseline in fasting plasma glucose over time (full analysis set, last observation carried forward). Linagliptin 5 mg once daily (•); placebo (○).
Figure 4
Figure 4
Percentage of patients achieving HbA1c < 53 mmol/mol, < 48 mmol/mol or ≥ 6 mmol/mol reduction after 24 weeks (full analysis set, non-completers were considered treatment failures). Linagliptin 5 mg once daily (■); placebo (□).

References

    1. Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. J Am Med Assoc. 1999;281:2005–2012.
    1. Staels B. Metformin and pioglitazone: effectively treating insulin resistance. Curr Med Res Opin. 2006;22:S27–S37.
    1. Kaku K. Efficacy and safety of therapy with metformin plus pioglitazone in the treatment of patients with type 2 diabetes: a double-blind, placebo-controlled, clinical trial. Curr Med Res Opin. 2009;25:1111–1119.
    1. Chawla S, Kaushik N, Singh NP, Ghosh RK, Saxena A. Effect of addition of either sitagliptin or pioglitazone in patients with uncontrolled type 2 diabetes mellitus on metformin: a randomized controlled trial. J Pharmacol Pharmacother. 2013;4:27–32.
    1. Scheen AJ, Tan MH, Betteridge DJ, Birkeland K, Schmitz O, Charbonnel B. Long-term glycaemic effects of pioglitazone compared with placebo as add-on treatment to metformin or sulphonylurea monotherapy in PROactive (PROactive 18) Diabet Med. 2009;26:1242–1249.
    1. Rodbard HW, Jellinger PS, Davidson JA, Einhorn D, Garber AJ, Grunberger G, et al. Statement by an American Association of Clinical Endocrinologists/American College of Endocrinology consensus panel on type 2 diabetes mellitus: an algorithm for glycemic control. Endocr Pract. 2009;15:540–559.
    1. Grunberger G. Clinical utility of the dipeptidyl peptidase-4 inhibitor linagliptin. Postgrad Med. 2013;125:79–90.
    1. Neumiller JJ. Differential chemistry (structure), mechanism of action, and pharmacology of GLP-1 receptor agonists and DPP-4 inhibitors. J Am Pharm Assoc (2003) 2009;49:S16–S29.
    1. Graefe-Mody U, Friedrich C, Port A, Ring A, Retlich S, Heise T, et al. Effect of renal impairment on the pharmacokinetics of the dipeptidyl peptidase-4 inhibitor linagliptin(*) Diabetes Obes Metab. 2011;13:939–946.
    1. Graefe-Mody U, Rose P, Retlich S, Ring A, Waldhauser L, Cinca R, et al. Pharmacokinetics of linagliptin in subjects with hepatic impairment. Br J Clin Pharmacol. 2012;74:75–85.
    1. Del Prato S, Barnett AH, Huisman H, Neubacher D, Woerle HJ, Dugi KA. Effect of linagliptin monotherapy on glycaemic control and markers of β-cell function in patients with inadequately controlled type 2 diabetes: a randomized controlled trial. Diabetes Obes Metab. 2011;13:258–267.
    1. Gomis R, Espadero RM, Jones R, Woerle HJ, Dugi KA. Efficacy and safety of initial combination therapy with linagliptin and pioglitazone in patients with inadequately controlled type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2011;13:653–661.
    1. Kawamori R, Inagaki N, Araki E, Watada H, Hayashi N, Horie Y, et al. Linagliptin monotherapy provides superior glycaemic control versus placebo or voglibose with comparable safety in Japanese patients with type 2 diabetes: a randomized, placebo and active comparator-controlled, double-blind study. Diabetes Obes Metab. 2012;14:348–357.
    1. Owens DR, Swallow R, Dugi KA, Woerle HJ. Efficacy and safety of linagliptin in persons with type 2 diabetes inadequately controlled by a combination of metformin and sulphonylurea: a 24-week randomized study. Diabet Med. 2011;28:1352–1361.
    1. Taskinen MR, Rosenstock J, Tamminen I, Kubiak R, Patel S, Dugi KA, et al. Safety and efficacy of linagliptin as add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2011;13:65–74.
    1. Bosi E, Ellis GC, Wilson CA, Fleck PR. Alogliptin as a third oral antidiabetic drug in patients with type 2 diabetes and inadequate glycaemic control on metformin and pioglitazone: a 52-week, randomized, double-blind, active-controlled, parallel-group study. Diabetes Obes Metab. 2011;13:1088–1096.
    1. DeFronzo RA, Burant CF, Fleck P, Wilson C, Mekki Q, Pratley RE. Efficacy and tolerability of the DPP-4 inhibitor alogliptin combined with pioglitazone, in metformin-treated patients with type 2 diabetes. J Clin Endocrinol Metab. 2012;97:1615–1622.
    1. Fonseca V, Staels B, Morgan JD, 2nd, Shentu Y, Golm GT, Johnson-Levonas AO, et al. Efficacy and safety of sitagliptin added to ongoing metformin and pioglitazone combination therapy in a randomized, placebo-controlled, 26-week trial in patients with type 2 diabetes. J Diabetes Complications. 2013;27:177–183.
    1. Kim YG, Hahn S, Oh TJ, Kwak SH, Park KS, Cho YM. Differences in the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors between Asians and non-Asians: a systematic review and meta-analysis. Diabetologia. 2013;56:696–708.
    1. Yki-Järvinen H, Rosenstock J, Durán-Garcia S, Pinnetti S, Bhattacharya S, Thiemann S, et al. Effects of adding linagliptin to basal insulin regimen for inadequately controlled type 2 diabetes: a ≥ 52-week randomized, double-blind study. Diabetes Care. 2013;36:3875–3881.
    1. Ahrén B, Schweizer A, Dejager S, Dunning BE, Nilsson PM, Persson M, et al. Vildagliptin enhances islet responsiveness to both hyper- and hypoglycemia in patients with type 2 diabetes. J Clin Endocrinol Metab. 2009;94:1236–1243.
    1. Barnett A. DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract. 2006;60:1454–1470.
    1. Goodarzi MO, Bryer-Ash M. Metformin revisited: re-evaluation of its properties and role in the pharmacopoeia of modern antidiabetic agents. Diabetes Obes Metab. 2005;7:654–665.
    1. Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ. 2005;172:213–226.
    1. Barnett AH. Linagliptin: a novel dipeptidyl peptidase 4 inhibitor with a unique place in therapy. Adv Ther. 2011;28:447–459.
    1. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetes Care. 2012;35:1364–1379.
    1. Roberts VL, Stewart J, Issa M, Lake B, Melis R. Triple therapy with glimepiride in patients with type 2 diabetes mellitus inadequately controlled by metformin and a thiazolidinedione: results of a 30-week, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther. 2005;27:1535–1547.

Source: PubMed

3
Subscribe