A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis

Luc Dupuis, Reinhard Dengler, Michael T Heneka, Thomas Meyer, Stephan Zierz, Jan Kassubek, Wilhelm Fischer, Franziska Steiner, Eva Lindauer, Markus Otto, Jens Dreyhaupt, Torsten Grehl, Andreas Hermann, Andrea S Winkler, Ulrich Bogdahn, Reiner Benecke, Bertold Schrank, Carsten Wessig, Julian Grosskreutz, Albert C Ludolph, GERP ALS Study Group, Nadja Borisow, Theresa Holm, Andre Maier, Thomas Meyer, Paula Budde, Torsten Grehl, Anne-Katrin Guettsches, Malte Bewersdorff, Michael Heneka, Andreas Hermann, Alexander Storch, Tobias Frank, Bettina Göricke, Jochen Weishaupt, Katharina Eger, Frank Hanisch, Stephan Zierz, Anna-Lena Cordes, Reinhard Dengler, Sonja Koerner, Katja Kollewe, Susanne Petri, Julian Grosskreutz, Albrecht Kunze, Tino Prell, Thomas Ringer, Jan Zinke, Johanna Anneser, Gian Domenico Borasio, Christine Chahli, Andrea S Winkler, Matthias Boentert, Bianca Stubbe-Draeger, Peter Young, Ulrich Bogdahn, Steffen Franz, Verena Haringer, Norbert Weidner, Reiner Benecke, Stefanie Meister, Johannes Prudlo, Matthias Wittstock, Johannes Dorst, Corinna Hendrich, Albert C Ludolph, Anne-Dorte Sperfeld, Ulrike Weiland, Sabine Neidhardt, Berthold Schrank, Marcus Beck, Peter Kraft, Klaus Toyka, Jochen Ulzheimer, Carsten Wessig, Luc Dupuis, Reinhard Dengler, Michael T Heneka, Thomas Meyer, Stephan Zierz, Jan Kassubek, Wilhelm Fischer, Franziska Steiner, Eva Lindauer, Markus Otto, Jens Dreyhaupt, Torsten Grehl, Andreas Hermann, Andrea S Winkler, Ulrich Bogdahn, Reiner Benecke, Bertold Schrank, Carsten Wessig, Julian Grosskreutz, Albert C Ludolph, GERP ALS Study Group, Nadja Borisow, Theresa Holm, Andre Maier, Thomas Meyer, Paula Budde, Torsten Grehl, Anne-Katrin Guettsches, Malte Bewersdorff, Michael Heneka, Andreas Hermann, Alexander Storch, Tobias Frank, Bettina Göricke, Jochen Weishaupt, Katharina Eger, Frank Hanisch, Stephan Zierz, Anna-Lena Cordes, Reinhard Dengler, Sonja Koerner, Katja Kollewe, Susanne Petri, Julian Grosskreutz, Albrecht Kunze, Tino Prell, Thomas Ringer, Jan Zinke, Johanna Anneser, Gian Domenico Borasio, Christine Chahli, Andrea S Winkler, Matthias Boentert, Bianca Stubbe-Draeger, Peter Young, Ulrich Bogdahn, Steffen Franz, Verena Haringer, Norbert Weidner, Reiner Benecke, Stefanie Meister, Johannes Prudlo, Matthias Wittstock, Johannes Dorst, Corinna Hendrich, Albert C Ludolph, Anne-Dorte Sperfeld, Ulrike Weiland, Sabine Neidhardt, Berthold Schrank, Marcus Beck, Peter Kraft, Klaus Toyka, Jochen Ulzheimer, Carsten Wessig

Abstract

Background: Pioglitazone, an oral anti-diabetic that stimulates the PPAR-gamma transcription factor, increased survival of mice with amyotrophic lateral sclerosis (ALS).

Methods/principal findings: We performed a phase II, double blind, multicentre, placebo controlled trial of pioglitazone in ALS patients under riluzole. 219 patients were randomly assigned to receive 45 mg/day of pioglitazone or placebo (one: one allocation ratio). The primary endpoint was survival. Secondary endpoints included incidence of non-invasive ventilation and tracheotomy, and slopes of ALS-FRS, slow vital capacity, and quality of life as assessed using EUROQoL EQ-5D. The study was conducted under a two-stage group sequential test, allowing to stop for futility or superiority after interim analysis. Shortly after interim analysis, 30 patients under pioglitazone and 24 patients under placebo had died. The trial was stopped for futility; the hazard ratio for primary endpoint was 1.21 (95% CI: 0.71-2.07, p = 0.48). Secondary endpoints were not modified by pioglitazone treatment. Pioglitazone was well tolerated.

Conclusion/significance: Pioglitazone has no beneficial effects on the survival of ALS patients as add-on therapy to riluzole.

Trial registration: Clinicaltrials.gov NCT00690118.

Conflict of interest statement

Competing Interests: Takeda Pharma GmbH partly funded this study. The trial used Pioglitazone which is a Takeda product. There are no other patents, products in development or marketed products to disclose. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Study flow chart.
Figure 1. Study flow chart.
The figure presents the numbers of participants who were randomly assigned, received pioglitazone or placebo, and were analysed for the primary outcome.
Figure 2. Survival upon pioglitazone.
Figure 2. Survival upon pioglitazone.
Kaplan-Meier plot for survival, the primary endpoint of the trial. Placebo-treated patients are in blue and pioglitazone treated patients are in red. Ticks represent censored patients. The shaded box indicates the first month of treatment during which a stepwise increase in pioglitazone dosage was performed. Numbers below the X axis indicate the number of patients still alive (“at risk”, i.e. living and not censored) at entry, 6, 12 and 18 months after randomization.
Figure 3. ALS-FRS upon pioglitazone.
Figure 3. ALS-FRS upon pioglitazone.
Total changes in ALS-FRS-R score after initiation of the treatment. Placebo-treated patients are in blue and pioglitazone treated patients are in red. The table below indicates the number of patients (n) per time point. Error bars are standard errors.

References

    1. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet. 1996;347:1425–1431.
    1. Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 2011;10:253–263.
    1. Ceriello A. Thiazolidinediones as anti-inflammatory and anti-atherogenic agents. Diabetes Metab Res Rev. 2008;24:14–26.
    1. Shibata N, Kawaguchi-Niida M, Yamamoto T, Toi S, Hirano A, et al. Effects of the PPARgamma activator pioglitazone on p38 MAP kinase and IkappaBalpha in the spinal cord of a transgenic mouse model of amyotrophic lateral sclerosis. Neuropathology. 2008;28:387–398.
    1. Schutz B, Reimann J, Dumitrescu-Ozimek L, Kappes-Horn K, Landreth GE, et al. The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J Neurosci. 2005;25:7805–7812.
    1. Kiaei M, Kipiani K, Chen J, Calingasan NY, Beal MF. Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol. 2005;191:331–336.
    1. DeFronzo RA, Tripathy D, Schwenke DC, Banerji M, Bray GA, et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364:1104–1115.
    1. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–1685.
    1. Belfort R, Harrison SA, Brown K, Darland C, Finch J, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355:2297–2307.
    1. Promrat K, Lutchman G, Uwaifo GI, Freedman RJ, Soza A, et al. A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis. Hepatology. 2004;39:188–196.
    1. Lu M, Sarruf DA, Talukdar S, Sharma S, Li P, et al. Brain PPAR-gamma promotes obesity and is required for the insulin-sensitizing effect of thiazolidinediones. Nat Med. 2011;17:618–622.
    1. Ryan KK, Li B, Grayson BE, Matter EK, Woods SC, et al. A role for central nervous system PPAR-gamma in the regulation of energy balance. Nat Med. 2011;17:623–626.
    1. Dupuis L, Oudart H, Rene F, Gonzalez de Aguilar JL, Loeffler JP. Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci U S A. 2004;101:11159–11164.
    1. Paganoni S, Deng J, Jaffa M, Cudkowicz ME, Wills AM. Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis. Muscle Nerve. 2011;44:20–24.
    1. Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar JL, Bonnefont-Rousselot D, et al. Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology. 2008;70:1004–1009.
    1. Dorst J, Kühnlein P, Hendrich C, Kassubek J, Sperfeld AD, et al. Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in Amyotrophic Lateral Sclerosis. J Neurol. 2010;258:613–617.
    1. Meininger V, Asselain B, Guillet P, Leigh PN, Ludolph A, et al. Pentoxifylline in ALS: a double-blind, randomized, multicenter, placebo-controlled trial. Neurology. 2006;66:88–92.
    1. Wang SK, Tsiatis AA. Approximately optimal one-parameter boundaries for group sequential trials. Biometrics. 1987;43:193–199.
    1. Dupuis L, Pradat PF, Ludolph AC, Loeffler JP. Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol. 2011;10:75–82.
    1. Cudkowicz M, Bozik ME, Ingersoll EW, Miller R, Mitsumoto H, et al. The effects of dexpramipexole (KNS-760704) in individuals with amyotrophic lateral sclerosis. Nat Med. 2011;17:1652–1656.
    1. Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med. 1999;5:347–350.
    1. Scott S, Kranz JE, Cole J, Lincecum JM, Thompson K, et al. Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler. 2008;9:4–15.
    1. Klivenyi P, Kiaei M, Gardian G, Calingasan NY, Beal MF. Additive neuroprotective effects of creatine and cyclooxygenase 2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem. 2004;88:576–582.
    1. Fornai F, Longone P, Cafaro L, Kastsiuchenka O, Ferrucci M, et al. Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2008;105:2052–2057.
    1. Gill A, Kidd J, Vieira F, Thompson K, Perrin S. No benefit from chronic lithium dosing in a sibling-matched, gender balanced, investigator-blinded trial using a standard mouse model of familial ALS. PLoS One. 2009;4:e6489.
    1. Pizzasegola C, Caron I, Daleno C, Ronchi A, Minoia C, et al. Treatment with lithium carbonate does not improve disease progression in two different strains of SOD1 mutant mice. Amyotroph Lateral Scler. 2009;10:221–228.
    1. Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science. 2003;301:839–842.
    1. Dobrowolny G, Giacinti C, Pelosi L, Nicoletti C, Winn N, et al. Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol. 2005;168:193–199.
    1. Messi ML, Clark HM, Prevette DM, Oppenheim RW, Delbono O. The lack of effect of specific overexpression of IGF-1 in the central nervous system or skeletal muscle on pathophysiology in the G93A SOD-1 mouse model of ALS. Exp Neurol. 2007;207:52–63.
    1. Kriz J, Nguyen MD, Julien JP. Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2002;10:268–278.
    1. Van Den Bosch L, Tilkin P, Lemmens G, Robberecht W. Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuroreport. 2002;13:1067–1070.
    1. Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002;417:74–78.
    1. Gordon PH, Moore DH, Miller RG, Florence JM, Verheijde JL, et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 2007;6:1045–1053.
    1. Dejesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron. 2011;72:245–256.
    1. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron. 2011;72:257–268.
    1. Deng HX, Zhai H, Bigio EH, Yan J, Fecto F, et al. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol. 2010;67:739–748.
    1. Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol. 2007;61:427–434.
    1. Deng HX, Bigio EH, Zhai H, Fecto F, Ajroud K, et al. Differential Involvement of Optineurin in Amyotrophic Lateral Sclerosis With or Without SOD1 Mutations. Arch Neurol. 2011;68:1057–1061.
    1. Ludolph AC, Bendotti C, Blaugrund E, Hengerer B, Loffler JP, et al. Guidelines for the preclinical in vivo evaluation of pharmacological active drugs for ALS/MND: report on the 142nd ENMC international workshop. Amyotroph Lateral Scler. 2007;8:217–223.
    1. Milane A, Tortolano L, Fernandez C, Bensimon G, Meininger V, et al. Brain and plasma riluzole pharmacokinetics: effect of minocycline combination. J Pharm Pharm Sci. 2009;12:209–217.
    1. Maeshiba Y, Kiyota Y, Yamashita K, Yoshimura Y, Motohashi M, et al. Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung. 1997;47:29–35.
    1. Glass CK, Saijo K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol. 2010;10:365–376.
    1. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918–934.

Source: PubMed

3
Subscribe