Lactobacillus adhesion to mucus

Maxwell L Van Tassell, Michael J Miller, Maxwell L Van Tassell, Michael J Miller

Abstract

Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host.

Keywords: adhesion; MUC2; MucBP; binding; lactobacillus; mucin; mucus; probiotics.

Figures

Figure 1
Figure 1
Diagram of the MUC2 protein core. The protein termini contain cysteine-rich regions homologous to von Willebrand Factor (vWF) domains (a); The N-terminal regions of MUC2 proteins contain vWF domain homologs D1, D2, D′, and D3 and the C-terminal regions contain vWF domain homologs D4, B, C, and CK. These terminal domains are responsible for the extensive polymerization between mucin monomers, along with the cysteine rich interruptions between glycosylated tandem repeats (b); The first of two repetitive domains (c) contains 21 repeats of an irregular motif, whereas the second domain (d) is formed of 50-115 tandem 23aa motifs (PTTTPITTTTTVTPTPTPTGTQT). Threonines in the repeats are O-glycosylated, forming a densely packed envelope of short, branched carbohydrate chains surrounding these regions.
Figure 2
Figure 2
Simplified histological cross-section of microbial adhesion to the colonic mucosal surface at various magnifications. (a) The layer of mucus atop colonic epithelial villi. Goblet cells can be seen interspersed throughout the columnar enterocytes, producing secretory mucin that makes up the gel matrix. The microbial communities residing in and on top of the mucus layer can only be found at substantial concentrations in the outermost regions of the mucus; (b) The mucus-bacteria interface. The mucin molecules polymerize to form the mucus layer matrix to which cells adhere. Extensive disulfide bonding between cysteine-rich regions of the mucin protein cores creates the characteristic viscoelastic properties of mucus. Oligosaccharide modifications of mucin protein cores form “bottle-brush” regions providing substrate for adhesion to binding proteins on bacterial cell surfaces; (c) A proposed molecular mechanism of adhesion. Evidence suggests that putative mucin-binding proteins anchored to the bacterial cell wall may interact with the glycosyl modifications of the mucin proteins to promote adhesion of the cell to the mucus layer. Mucin oligosaccharide structures vary due to tissue and cell-specific glycosyltransferase expression levels, so the specificity of particular oligosaccharide moieties may lead to preferential binding of particular bacteria to different host niches.

References

    1. Ouwehand A.C., Salminen S., Isolauri E. Probiotics: An overview of beneficial effects. Antonie van Leeuwenhoek. 2002;82:279–289.
    1. Matsuo K., Ota H., Akamatsu T., Sugiyama A., Katsuyama T. Histochemistry of the surface mucous gel layer of the human colon. Gut. 1997;40:782–789.
    1. Swidsinski A., Loening-Baucke V., Theissig F., Engelhardt H., Bengmark S., Koch S., Lochs H., Dörffel Y. Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut. 2007;56:343–350.
    1. Maassen C.B., van Holten-Neelen C., Balk F., den Bak-Glashouwer M.J., Leer R.J., Laman J.D., Boersma W.J., Claassen E. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine. 2000;18:2613–2623.
    1. Deplancke B., Gaskins H.R. Microbial modulation of innate defense: Goblet cells and the intestinal mucus layer. Am. J. Clin. Nutr. 2001;73:1131S–1141S.
    1. Valeur N., Engel P., Carbajal N., Connolly E., Ladefoged K. Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Appl. Environ. Microbiol. 2004;70:1176–1181.
    1. Weiss G., Jespersen L. Transcriptional analysis of genes associated with stress and adhesion in Lactobacillus acidophilus NCFM during the passage through an in vitro gastrointestinal tract model. J. Mol. Microbiol. Biotechnol. 2010;18:206–214.
    1. Blum S. Adhesion studies for probiotics: Need for validation and refinement. Trends Food Sci. Technol. 1999;10:405–410.
    1. Fuller R. Probiotics in man and animals. J. Appl. Bacteriol. 1989;66:365–378.
    1. Laboisse C., Jarry A., Branka J.E., Merlin D., Bou-Hanna C., Vallette G. Recent aspects of the regulation of intestinal mucus secretion. Proc. Nutr. Soc. 1996;55:259–264.
    1. Akiba Y., Guth P.H., Engel E., Nastaskin I., Kaunitz J.D. Dynamic regulation of mucus gel thickness in rat duodenum. Am. J. Physiol. Gastrointest. Liver Physiol. 2000;279:G437–G447.
    1. Byrd J.C., Bresalier R.S. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev. 2004;23:77–99.
    1. Gendler S.J. MUC1, the renaissance molecule. J. Mammary Gland Biol. Neoplasia. 2001;6:339–353.
    1. Chambers J.A., Hollingsworth M.A., Trezise A.E., Harris A. Developmental expression of mucin genes MUC1 and MUC2. J. Cell Sci. 1994;107:413–424.
    1. Allen A., Hutton D.A., Pearson J.P. The MUC2 gene product: A human intestinal mucin. Int. J. Biochem. Cell Biol. 1998;30:797–801.
    1. Pratt W.S., Crawley S., Hicks J., Ho J., Nash M., Kim Y.S., Gum J.R., Swallow D.M. Multiple transcripts of MUC3: Evidence for two genes, MUC3A and MUC3B. Biochem. Biophys. Res. Commun. 2000;275:916–923.
    1. Carraway K.L., Perez A., Idris N., Jepson S., Arango M., Komatsu M., Haq B., Price-Schiavi S.A., Zhang J., Carraway C.A. Muc4/sialomucin complex, the intramembrane ErbB2 ligand, in cancer and epithelia: To protect and to surviv. Prog. Nucleic Acid Res. Mol. Biol. 2002;71:149–185.
    1. Porchet N., Nguyen V.C., Dufosse J., Audie J.P., Guyonnet-Duperat V., Gross M.S., Denis C., Degand P., Bernheim A., Aubert J.P. Molecular cloning and chromosomal localization of a novel human tracheo-bronchial mucin cDNA containing tandemly repeated sequences of 48 base Pairs. Biochem. Biophys. Res. Commun. 1991;175:414–422.
    1. Desseyn J.L., Guyonnet-Dupérat V., Porchet N., Aubert J.P., Laine A. Human mucin gene MUC5B, the 10.7-Kb large central exon encodes various alternate subdomains resulting in a super-repeat. Structural evidence for a 11p15.5 gene family. J. Biol. Chem. 1997;272:3168–3178.
    1. Nielsen P.A., Bennett E.P., Wandall H.H., Therkildsen M.H., Hannibal J., Clausen H. Identification of a major human high molecular weight salivary mucin (MG1) as tracheobronchial mucin MUC5B. Glycobiology. 1997;7:413–419.
    1. Escande F., Aubert J.P., Porchet N., Buisine M.P. Human mucin gene MUC5AC: Organization of its 5′-region and central repetitive region. Biochem. J. 2001;358:763–772.
    1. Nordman H., Davies J.R., Lindell G., de Bolós C., Real F., Carlstedt I. Gastric MUC5AC and MUC6 are large oligomeric mucins that differ in size, glycosylation and tissue distribution. Biochem. J. 2002;364:191–200.
    1. Toribara N.W., Ho S.B., Gum E., Gum J.R., Lau P., Kim Y.S. The carboxyl-terminal sequence of the human secretory mucin, MUC6. Analysis of the primary amino acid sequence. J. Biol. Chem. 1997;272:16398–16403.
    1. Bartman A.E., Buisine M.P., Aubert J.P., Niehans G.A., Toribara N.W., Kim Y.S., Kelly E.J., Crabtree J.E., Ho S.B. The MUC6 secretory mucin gene is expressed in a wide variety of epithelial tissues. J. Pathol. 1998;186:398–405.
    1. Bobek L.A., Tsai H., Biesbrock A.R., Levine M.J. Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7) J. Biol. Chem. 1993;268:20563–20569.
    1. Bobek L.A., Liu J., Sait S.N., Shows T.B., Bobek Y.A., Levine M.J. Structure and chromosomal localization of the human salivary mucin gene, MUC7. Genomics. 1996;31:277–282.
    1. Shankar V., Pichan P., Eddy R.L., Tonk V., Nowak N., Sait S.N., Shows T.B., Schultz R.E., Gotway G., Elkins R.C., et al. Chromosomal localization of a human mucin gene (MUC8) and cloning of the cDNA corresponding to the carboxy terminus. Am. J. Respir. Cell Mol. Biol. 1997;16:232–241.
    1. Williams S.J., McGuckin M.A., Gotley D.C., Eyre H.J., Sutherland G.R., Antalis T.M. Two novel mucin genes down-regulated in colorectal cancer identified by differential display. Cancer Res. 1999;59:4083–4089.
    1. Williams S.J., Wreschner D.H., Tran M., Eyre H.J., Sutherland G.R., McGuckin M.A. Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J. Biol. Chem. 2001;276:18327–18336.
    1. Liu C., Shao Z.M., Zhang L., Beatty P., Sartippour M., Lane T., Livingston E., Nguyen M. Human endomucin is an endothelial marker. Biochem. Biophys. Res. Commun. 2001;288:129–136.
    1. Pallesen L.T., Berglund L., Rasmussen L.K., Petersen T.E., Rasmussen J.T. Isolation and characterization of MUC15, a novel cell membrane-associated mucin. Eur. J. Biochem. 2002;269:2755–2763.
    1. Yin B.W.T., Dnistrian A., Lloyd K.O. Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. Int. J. Cancer. 2002;98:737–740.
    1. McLemore M.R., Aouizerat B. Introducing the MUC16 gene: Implications for prevention and early detection in epithelial ovarian cancer. Biol. Res. Nurs. 2005;6:262–267.
    1. Gum J.R., Crawley S.C., Hicks J.W., Szymkowski D.E., Kim Y.S. MUC17, a novel membrane-tethered mucin. Biochem. Biophys. Res. Commun. 2002;291:466–475.
    1. Moniaux N., Junker W.M., Singh A.P., Jones A.M., Batra S.K. Characterization of human mucin muc17. Complete coding sequence and organization. J. Biol. Chem. 2006;281:23676–23685.
    1. Lehmann J.M., Riethmüller G., Johnson J.P. MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc. Natl. Acad. Sci. USA. 1989;86:9891–9895.
    1. Johnson J.P., Rothbächer U., Sers C. The progression associated antigen MUC18: A unique member of the immunoglobulin supergene family. Melanoma Res. 1993;3:337–340.
    1. Chen Y., Zhao Y.H., Kalaslavadi T.B., Hamati E., Nehrke K., Le A.D., Ann D.K., Wu R. Genome-wide search and identification of a novel gel-forming mucin muc19/muc19 in glandular tissues. Am. J. Respir. Cell Mol. Biol. 2004;30:155–165.
    1. Higuchi T., Orita T., Nakanishi S., Katsuya K., Watanabe H., Yamasaki Y., Waga I., Nanayama T., Yamamoto Y., Munger W., et al. Molecular cloning, genomic structure, and expression analysis of MUC20, a novel mucin protein, up-regulated in injured kidney. J. Biol. Chem. 2004;279:1968–1979.
    1. Yi Y., Kamata-Sakurai M., Denda-Nagai K., Itoh T., Okada K., Ishii-Schrade K., Iguchi A., Sugiura D., Irimura T. Mucin 21/epiglycanin modulates cell adhesion. J. Biol. Chem. 2010;285:21233–21240.
    1. Itoh Y., Kamata-Sakurai M., Denda-Nagai K., Nagai S., Tsuiji M., Ishii-Schrade K., Okada K., Goto A., Fukayama M., Irimura T. Identification and expression of human epiglycanin/muc21: A novel transmembrane mucin. Glycobiology. 2008;18:74–83.
    1. Kurosawa N., Kanemitsu Y., Matsui T., Shimada K., Ishihama H., Muramatsu T. Genomic analysis of a murine cell-surface sialomucin, MGC-24/CD164. Eur. J. Biochem. 1999;265:466–472.
    1. National Center for Biotechnology Information. HomoloGene Home Page. [(accessed on 30 October 2010)]. Available online: .
    1. Université René Descartes-Paris. GENATLAS. [(accessed on 30 October 2010)]. Available online: .
    1. Genomics Intstitute of the Nevartis Research Foundation. BioGPS. [(accessed on 30 October 2010)]. Available online: .
    1. Hanisch F.G. O-Glycosylation of the mucin type. Biol. Chem. 2001;382:143–149.
    1. Dekker J., Rossen J.W.A., Büller H.A., Einerhand A.W.C. The MUC family: An obituary. Trends Biochem. Sci. 2002;27:126–131.
    1. Allen A., Pearson J.P. Mucus glycoproteins of the normal gastrointestinal tract. Eur. J. Gastroenterol. Hepatol. 1993;5:193–199.
    1. Moncada D.M., Kammanadiminti S.J., Chadee K. Mucin and toll-like receptors in host defense against intestinal parasites. Trends Parasitol. 2003;19:305–311.
    1. Liévin-Le Moal V., Servin A.L., Coconnier-Polter M. The increase in mucin exocytosis and the upregulation of MUC genes encoding for membrane-bound mucins induced by the thiol-activated exotoxin listeriolysin O is a host cell defence response that inhibits the cell-entry of Listeria monocytogenes. Cell. Microbiol. 2005;7:1035–1048.
    1. Johansson M.E.V., Phillipson M., Petersson J., Velcich A., Holm L., Hansson G.C. The inner of the two MUC2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci.USA. 2008;105:15064–15069.
    1. Strous G.J., Dekker J. Mucin-type glycoproteins. Crit. Rev. Biochem. Mol. Biol. 1992;27:57–92.
    1. Dharmani P., Srivastava V., Kissoon-Singh V., Chadee K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J. Innate Immun. 2009;1:123–135.
    1. Marcaurelle L.A., Bertozzi C.R. Recent advances in the chemical synthesis of mucin-like glycoproteins. Glycobiology. 2002;12:69R–77R.
    1. Brockhausen I., Schutzbach J., Kuhns W. Glycoproteins and their relationship to human disease. Acta Anat. (Basel) 1998;161:36–78. doi: 10.1159/000046450.
    1. Slomiany A., Zdebska E., Slomiany B.L. Structures of the neutral oligosaccharides isolated from A-active human gastric mucin. J. Biol. Chem. 1984;259:14743–14749.
    1. Corfield A.P., Myerscough N., Gough M., Brockhausen I., Schauer R., Paraskeva C. Glycosylation patterns of mucins in colonic disease. Biochem. Soc. Trans. 1995;23:840–845.
    1. Sheahan D.G., Jervis H.R. Comparative histochemistry of gastrointestinal mucosubstances. Am. J. Anat. 1976;146:103–131.
    1. Chance D.L., Mawhinney T.P. Carbohydrate sulfation effects on growth of pseudomonas aeruginosa. Microbiology. 2000;146:1717–1725.
    1. Fontaine N., Meslin J.C., Doré J. Selective in vitro degradation of the sialylated fraction of germ-free rat mucins by the caecal flora of the rat. Reprod. Nutr. Dev. 1998;38:289–296.
    1. Roberto A.M., Wright D.P. Bacterial glycosulphatases and sulphomucin degradation. Can. J. Gastroenterol. 1997;11:361–366.
    1. McCool D.J., Forstner J.F., Forstner G.G. Synthesis and secretion of mucin by the human colonic tumour cell line LS180. Biochem. J. 1994;302:111–118.
    1. Sonnenburg J.L., Angenent L.T., Gordon J.I. Getting a grip on things: How do communities of bacterial symbionts become established in our intestine? Nat. Immunol. 2004;5:569–573.
    1. Carrington S.D., Clyne M., Reid C.J., FitzPatrick E., Corfield A.P. Microbial Interaction with Mucus and Mucins. In: Moran A., Holst O., Brennan P., von Itzstein M., editors. Microbial Glycobiology: Structures, Relevance and Applications. Elsevier; Amsterdam, The Netherlands: 2009. pp. 655–671.
    1. Varki A. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology. 1993;3:97–130.
    1. Gagneux P., Varki A. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology. 1999;9:747–755.
    1. Patsos G., Corfield A. Management of the human mucosal defensive barrier: Evidence for glycan legislation. Biol. Chem. 2009;390:581–590.
    1. Robbe C., Capon C., Maes E., Rousset M., Zweibaum A., Zanetta J.P., Michalski J.C. Evidence of regio-specific glycosylation in human intestinal mucins: Presence of an acidic gradient along the intestinal tract. J. Biol. Chem. 2003;278:46337–46348.
    1. Brockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochim. Biophys. Acta. 1999;1473:67–95.
    1. Kelly R.J., Rouquier S., Giorgi D., Lennon G.G., Lowe J.B. Sequence and expression of a candidate for the human secretor blood group Alpha(1,2)Fucosyltransferase gene (FUT2). homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 1995;270:4640–4649.
    1. Hoskins L.C., Boulding E.T. Degradation of blood group antigens in human colon ecosystems. II. A gene interaction in man that affects the fecal population density of certain enteric bacteria. J. Clin. Invest. 1976;57:74–82.
    1. Salyers A.A., Pajeau M., McCarthy R.E. Importance of mucopolysaccharides as substrates for Bacteroides thetaiotaomicron growing in intestinal tracts of exgermfree mice. Appl. Environ. Microbiol. 1988;54:1970–1976.
    1. Hwa V., Salyers A.A. Analysis of two chondroitin sulfate utilization mutants of Bacteroides thetaiotaomicron that differ in their abilities to compete with the wild type in the gastrointestinal tracts of germfree mice. Appl. Environ. Microbiol. 1992;58:869–876.
    1. Corfield A.P., Wagner S.A., Clamp J.R., Kriaris M.S., Hoskins L.C. Mucin degradation in the human colon: Production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect. Immun. 1992;60:3971–3978.
    1. Katayama T., Fujita K., Yamamoto K. Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins. J. Biosci. Bioeng. 2005;99:457–465.
    1. Ruiz-Palacios G.M., Cervantes L.E., Ramos P., Chavez-Munguia B., Newburg D.S. Campylobacter jejuni binds intestinal H(O) antigen (Fuc Alpha 1, 2Gal Beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 2003;278:14112–14120.
    1. Oakey H.J., Harty D.W., Knox K.W. Enzyme production by lactobacilli and the potential link with infective endocarditis. J. Appl. Bacteriol. 1995;78:142–148.
    1. Ashida H., Miyake A., Kiyohara M., Wada J., Yoshida E., Kumagai H., Katayama T., Yamamoto K. Two distinct Alpha-l-Fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology. 2009;19:1010–1017.
    1. Lindén S.K., Sutton P., Karlsson N.G., Korolik V., McGuckin M.A. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008;1:183–197.
    1. Hashimoto K., Goto S., Kawano S., Aoki-Kinoshita K.F., Ueda N., Hamajima M., Kawasaki T., Kanehisa M. KEGG as a Glycome Informatics Resource. Glycobiology. 2006;16:63R–70R.
    1. Raman R., Venkataraman M., Ramakrishnan S., Lang W., Raguram S., Sasisekharan R. Advancing glycomics: Implementation strategies at the consortium for functional glycomics. Glycobiology. 2006;16:82R–90R.
    1. Tannock G.W., Munro K., Harmsen H.J., Welling G.W., Smart J., Gopal P.K. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillusrhamnosus DR20. Appl. Environ. Microbiol. 2000;66:2578–2588.
    1. Garrido D., Suau A., Pochart P., Cruchet S., Gotteland M. Modulation of the fecal microbiota by the intake of a Lactobacillus johnsonii La1-Containing product in human volunteers. FEMS Microbiol. Lett. 2005;248:249–256.
    1. Wadström T., Andersson K., Sydow M., Axelsson L., Lindgren S., Gullmar B. Surface properties of lactobacilli isolated from the small intestine of pigs. J. Appl. Bacteriol. 1987;62:513–520.
    1. Lichtenberger L.M. The hydrophobic barrier properties of gastrointestinal mucus. Annu. Rev. Physiol. 1995;57:565–583.
    1. Ehrmann M.A., Kurzak P., Bauer J., Vogel R.F. Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J. Appl. Microbiol. 2002;92:966–975.
    1. Kos B., Susković J., Vuković S., Simpraga M., Frece J., Matosić S. Adhesion and Aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 2003;94:981–987.
    1. Ouwehand A.C., Kirjavainen P.V., Grönlund M.M., Isolauri E., Salminen S.J. Adhesion of probiotic micro-organisms to intestinal mucus. Int. Dairy J. 1999;9:623–630.
    1. Muñoz-Provencio D., Llopis M., Antolín M., de Torres I., Guarner F., Pérez-Martínez G., Monedero V. Adhesion properties of Lactobacillus casei strains to resected intestinal fragments and components of the extracellular matrix. Arch. Microbiol. 2009;191:153–161.
    1. Jacobsen C.N., Rosenfeldt N.V., Hayford A.E., Møller P.L., Michaelsen K.F., Paerregaard A., Sandström B., Tvede M., Jakobsen M. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 1999;65:4949–4956.
    1. Jonsson H., Ström E., Roos S. Addition of mucin to the growth medium triggers mucus-binding activity in different strains of Lactobacillus reuteri in vitro. FEMS Microbiol. Lett. 2001;204:19–22.
    1. MacKenzie D.A., Tailford L.E., Hemmings A.M., Juge N. Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. J. Biol. Chem. 2009;284:32444–32453.
    1. Dam T.K., Brewer C.F. Multivalent lectin-carbohydrate interactions energetics and mechanisms of binding. Adv. Carbohydr. Chem. Biochem. 2010;63:139–164.
    1. Roos S., Jonsson H. A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology. 2002;148:433–442.
    1. Boekhorst J., Helmer Q., Kleerebezem M., Siezen R.J. Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology. 2006;152:273–280.
    1. Altermann E., Russell W.M., Azcarate-Peril M.A., Barrangou R., Buck B.L., McAuliffe O., Souther N., Dobson A., Duong T., Callanan M., et al. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus Ncfm. Proc. Natl. Acad. Sci. USA. 2005;102:3906–3912.
    1. Kleerebezem M., Hols P., Bernard E., Rolain T., Zhou M., Siezen R.J., Bron P.A. The extracellular biology of the lactobacilli. FEMS Microbiol. Rev. 2010;34:199–230.
    1. Mackenzie D.A., Jeffers F., Parker M.L., Vibert-Vallet A., Bongaerts R.J., Roos S., Walter J., Juge N. Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiology. 2010;156:3368–3378.
    1. Pridmore R.D., Berger B., Desiere F., Vilanova D., Barretto C., Pittet A.C., Zwahlen M.C., Rouvet M., Altermann E., Barrangou R., et al. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc. Natl. Acad. Sci. USA. 2004;101:2512–2517.
    1. Kankainen M., Paulin L., Tynkkynen S., von Ossowski I., Reunanen J., Partanen P., Satokari R., Vesterlund S., Hendrickx A.P.A., Lebeer S. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl. Acad. Sci. USA. 2009;106:17193–17198.
    1. Connell I., Agace W., Klemm P., Schembri M., Mărild S., Svanborg C. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl. Acad. Sci. USA. 1996;93:9827–9832.
    1. Macías-Rodríguez M.E., Zagorec M., Ascencio F., Vázquez-Juárez R., Rojas M. Lactobacillus fermentum BCS87 expresses mucus- and mucin-binding proteins on the cell surface. J. Appl. Microbiol. 2009;107:1866–1874.
    1. Buck B.L., Altermann E., Svingerud T., Klaenhammer T.R. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 2005;71:8344–8351.
    1. Pretzer G., Snel J., Molenaar D., Wiersma A., Bron P.A., Lambert J., de Vos W.M., van der Meer R., Smits M.A., Kleerebezem M. Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J. Bacteriol. 2005;187:6128–6136.
    1. Rojas M., Ascencio F., Conway P.L. Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl. Environ. Microbiol. 2002;68:2330–2336.
    1. Miyoshi Y., Okada S., Uchimura T., Satoh E. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cell. Biosci. Biotechnol. Biochem. 2006;70:1622–1628.
    1. Jacobson G.R., Rosenbusch J.P. Abundance and membrane association of elongation factor Tu in E. coli. Nature. 1976;261:23–26.
    1. Dallo S.F., Kannan T.R., Blaylock M.W., Baseman J.B. Elongation factor Tu and E1 beta subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol. Microbiol. 2002;46:1041–1051.
    1. Granato D., Bergonzelli G.E., Pridmore R.D., Marvin L., Rouvet M., Corthésy-Theulaz I.E. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect. Immun. 2004;72:2160–2169.
    1. Nakamura J., Ito D., Nagai K., Umehara Y., Hamachi M., Kumagai C. Rapid and sensitive detection of hiochi bacteria by amplification of hiochi bacterial common antigen gene by PCR method and characterization of the antigen. J. Ferment. Bioeng. 1997;83:161–167.
    1. Ramiah K., van Reenen C.A., Dicks L.M.T. Expression of the mucus adhesion genes mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PC. Int. J. Food Microbiol. 2007;116:405–409.
    1. Finn R.D., Mistry J., Tate J., Coggill P., Heger A., Pollington J.E., Gavin O.L., Gunesekaran P., Ceric G., Forslund K., et al. The Pfam protein families database. Nucleic Acids Res. 2010;38:D211–D222.
    1. The UniProt Consortium. The universal protein resource (UniProt) in 2010. Nucleic Acids Res. 2010;38:D142–D148. doi: 10.1093/nar/gkp846.
    1. Sleytr U.B., Bayley H., Sára M., Breitwieser A., Küpcü S., Mader C., Weigert S., Unger F.M., Messner P., Jahn-Schmid B. Applications of s-layers. FEMS Microbiol. Rev. 1997;20:151–175. doi: 10.1016/S0168-6445(97)00044-2.
    1. Chen X., Xu J., Shuai J., Chen J., Zhang Z., Fang W. The s-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium. Int. J. Food Microbiol. 2007;115:307–312.
    1. Sánchez B., Arias S., Chaignepain S., Denayrolles M., Schmitter J.M., Bressollier P., Urdaci M.C. Identification of surface proteins involved in the adhesion of a probiotic Bacillus cereus strain to mucin and fibronectin. Microbiology. 2009;155:1708–1716.
    1. Zhang Y.C., Zhang L.W., Tuo Y.F., Guo C.F., Yi H.X., Li J.Y., Han X., Du M. Inhibition of Shigella sonnei adherence to HT-29 cells by lactobacilli from Chinese fermented food and preliminary characterization of s-layer protein involvement. Res. Microbiol. 2010;161:667–672.
    1. Bøhle L.A., Brede D.A., Diep D.B., Holo H., Nes I.F. The mucus adhesion promoting protein (MapA) of Lactobacillus reuteri is specifically degraded to an antimicrobial peptide. Appl. Environ. Microbiol. 2010;76:7306–7309.
    1. Ouwehand A.C., Salminen S. In vitro adhesion assays for probiotics and their in vivo relevance: A review. Microb. Ecol. Health Dis. 2003;15:175–184.
    1. Ouwehand A.C., Tuomola E.M., Tölkkö S., Salminen S. Assessment of adhesion properties of novel probiotic strains to human intestinal mucus. Int. J. Food Microbiol. 2001;64:119–126.
    1. Kankaanpää P.E., Salminen S.J., Isolauri E., Lee Y.K. The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol. Lett. 2001;194:149–153.
    1. Dunne C., O’Mahony L., Murphy L., Thornton G., Morrissey D., O’Halloran S., Feeney M., Flynn S., Fitzgerald G., Daly C., et al. In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. Am. J. Clin. Nutr. 2001;73:386S–392S.
    1. Juntunen M., Kirjavainen P.V., Ouwehand A.C., Salminen S.J., Isolauri E. Adherence of probiotic bacteria to human intestinal mucus in healthy infants and during rotavirus infection. Clin. Diagn. Lab. Immunol. 2001;8:293–296.
    1. Schiffrin E.J., Brassart D., Servin A.L., Rochat F., Donnet-Hughes A. Immune modulation of blood leukocytes in humans by lactic acid bacteria: Criteria for strain selection. Am. J. Clin. Nutr. 1997;66:515S–520S.
    1. Vélez M.P., Petrova M.I., Lebeer S., Verhoeven T.L.A., Claes I., Lambrichts I., Tynkkynen S., Vanderleyden J., De Keersmaecker S.C.J. Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation. FEMS Immunol. Med. Microbiol. 2010;59:386–398.
    1. Lee Y., Puong K. Competition for adhesion between probiotics and human gastrointestinal pathogens in the presence of carbohydrate. Br. J. Nutr. 2002;88:S101–S108.
    1. Candela M., Perna F., Carnevali P., Vitali B., Ciati R., Gionchetti P., Rizzello F., Campieri M., Brigidi P. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: Adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int. J. Food Microbiol. 2008;125:286–292.
    1. Gueimonde M., Jalonen L., He F., Hiramatsu M., Salminen S. Adhesion and competitive inhibition and displacement of human enteropathogens by selected lactobacilli. Food Res. Int. 2006;39:467–471.
    1. Majamaa H., Isolauri E., Saxelin M., Vesikari T. Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J. Pediatr. Gastroenterol. Nutr. 1995;20:333–338.
    1. O’Halloran S., Feeney M., Morrissey D., Murphy L., Thornton G., Shanahan F., O’Sullivan G.C., Collins J.K. Adhesion of potential probiotic bacteria to human epithelial cell lines. Int. Dairy J. 1998;8:596.
    1. Laparra J.M., Sanz Y. Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett. Appl. Microbiol. 2009;49:695–701.
    1. Tallon R., Arias S., Bressollier P., Urdaci M.C. Strain- and matrix-dependent adhesion of Lactobacillus plantarum is mediated by proteinaceous bacterial compounds. J. Appl. Microbiol. 2007;102:442–451.
    1. Li X.J., Yue L.Y., Guan X.F., Qiao S.Y. The adhesion of putative probiotic lactobacilli to cultured epithelial cells and porcine intestinal mucus. J. Appl. Microbiol. 2008;104:1082–1091.
    1. Pinto M., Robine-Leon S., Appay M.D. Enterocyte-like differentiation and polarization of the human colon Carcinoma Cell Line Caco-2 in culture. Biol. Cell. 1983;47:323–330.
    1. Rousset M. The human colon carcinoma cell lines HT-29 and Caco-2: Two in vitro models for the study of intestinal differentiation. Biochimie. 1986;68:1035–1040.
    1. Lenaerts K., Bouwman F.G., Lamers W.H., Renes J., Mariman E.C. Comparative proteomic analysis of cell lines and scrapings of the human intestinal epithelium. BMC Genomics. 2007;8:91.
    1. Crociani J., Grill J.P., Huppert M., Ballongue J. Adhesion of different Bifidobacteria strains to human enterocyte-like Caco-2 cells and comparison with in vivo study. Lett. Appl. Microbiol. 1995;21:146–148.
    1. Lesuffleur T., Barbat A., Dussaulx E., Zweibaum A. Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res. 1990;50:6334–6343.
    1. Leteurtre E., Gouyer V., Rousseau K., Moreau O., Barbat A., Swallow D., Huet G., Lesuffleur T. Differential mucin expression in colon carcinoma HT-29 clones with variable resistance to 5-fluorouracil and methotrexate. Biol. Cell. 2004;96:145–151.
    1. Bernet M.F., Brassart D., Neeser J.R., Servin A.L. Lactobacillus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut. 1994;35:483–489.
    1. Gopal P.K., Prasad J., Smart J., Gill H.S. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichiacoli. Int. J. Food Microbiol. 2001;67:207–216.
    1. Lesuffleur T., Porchet N., Aubert J.P., Swallow D., Gum J.R., Kim Y.S., Real F.X., Zweibaum A. Differential expression of the human mucin genes MUC1 to MUC5 in relation to growth and differentiation of different mucus-secreting HT-29 cell subpopulations. J. Cell Sci. 1993;106:771–783.
    1. Kerneis S., Bernet M.F., Coconnier M.H., Servin A.L. Adhesion of human enterotoxigenic Escherichia coli to human mucus secreting HT-29 cell subpopulations in culture. Gut. 1994;35:1449–1454.
    1. Nutten S., Sansonetti P., Huet G., Bourdon-Bisiaux C., Meresse B., Colombel J.F., Desreumaux P. Epithelial inflammation response induced by Shigella flexneri depends on mucin gene expression. Microbes Infect. 2002;4:1121–1124.
    1. Walter E., Janich S., Roessler B.J., Hilfinger J.M., Amidon G.L. HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: In vitro-in vivo correlation with permeability data from rats and humans. J. Pharm. Sci. 1996;85:1070–1076.
    1. Pontier C., Pachot J., Botham R., Lenfant B., Arnaud P. HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: Role of the mucus layer. J. Pharm. Sci. 2001;90:1608–1619.
    1. Chen X.M., Elisia I., Kitts D.D. Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using taguchi design. J. Pharmacol. Toxicol. Methods. 2010;61:334–342.
    1. Henriksson A., Szewzyk R., Conway P.L. Characteristics of the adhesive determinants of Lactobacillus fermentum 104. Appl. Environ. Microbiol. 1991;57:499–502.
    1. Vesterlund S., Paltta J., Karp M., Ouwehand A. Adhesion of bacteria to resected human colonic tissue: Quantitative analysis of bacterial adhesion and viability. Res. Microbiol. 2005;156:238–244.
    1. Phillips A.D., Navabpour S., Hicks S., Dougan G., Wallis T., Frankel G. Enterohaemorrhagic Escherichia coli O157:H7 target Peyer’s patches in humans and cause attaching/effacing lesions in both human and bovine intestine. Gut. 2000;47:377–381.
    1. Girard F., Dziva F., van Diemen P., Phillips A.D., Stevens M.P., Frankel G. Adherence of enterohemorrhagic Escherichia coli O157, O26, and O111 strains to bovine intestinal explants ex viv. Appl. Environ. Microbiol. 2007;73:3084–3090.
    1. Day C.J., Tiralongo J., Hartnell R.D., Logue C., Wilson J.C., von Itzstein M., Korolik V. Differential carbohydrate recognition by Campylobacter jejuni strain 11168: Influences of temperature and growth conditions. PLoS One. 2009;4:781–790.

Source: PubMed

3
Subscribe