The impact of insulin pump therapy to oxidative stress in patients with diabetic nephropathy

Xing-Guang Zhang, Yan-Qi Zhang, Qian-Peng Cheng, Yi Cao, Jian-Min Sun, Xiao-Feng Lv, Xing-Guang Zhang, Yan-Qi Zhang, Qian-Peng Cheng, Yi Cao, Jian-Min Sun, Xiao-Feng Lv

Abstract

Background: The oxidative stress resulting from increased production of ROS plays a crucial role in the development of diabetic complications. We aim to explore the relationships between oxidative stress, diabetic nephropathy (DN) and short-term insulin pump intensive therapy (insulin therapy).

Methods: Levels of 8-hydroxy-deoxyguanosine (8-OHdG), 3-nitrotyrosine (3-NT), glutathione (GSH), superoxide dismutase (SOD) and Interleukin-6 (IL-6) were estimated before and after 2 weeks of insulin therapy in normal group (NC) and type 2 diabetic (DM) with normal albuminuria (NA), microalbuminuria (MA) and clinical albuminuria (CA).

Results: In DM group, levels of 8-OHdG and 3-NT were higher than those in NC group (P < 0.05); GSH and SOD were lower (P < 0.05). And their levels changed with urine albumin-creatinine ratio (P < 0.05). After insulin therapy, these derangements were significantly ameliorated and the changes in NA and MA groups were more significant than CA group (P < 0.05). Correlation analysis showed glycated hemoglobin, the course of disease, the HOME-IR and fasting plasma glucose were positively correlated with 8-OHdG and 3-NT, but negatively correlated with GSH and SOD.

Conclusions: The oxidative stress gradually increased with the magnitude of DN, and insulin pump intensive therapy can significantly ameliorate the derangements in the early stage of DN. Trial registration NCT03174821.

Keywords: Diabetic nephropathy; Insulin pump intensive therapy; Oxidative stress.

Figures

Fig. 1
Fig. 1
The comparison of SOD (a), 3-NT (b), 8-OHdG (c), GSH (d), CRP (e) and IL-6 (f) levels among NC, NA, MA and CA groups before insulin pump therapy
Fig. 2
Fig. 2
The comparison of the levels of GSH (a) and SOD (b), 3-NT (c) and 8-OHdG (d) in NA, MA and CA groups before and after insulin pump therapy
Fig. 3
Fig. 3
The relation assessment between 8-OHdG and parameters such as glycated hemoglobin (a), fasting plasma glucose (b), the course of disease (c), and the HOME-IR (d)
Fig. 4
Fig. 4
The relation assessment between 3-NT and parameters such as glycated hemoglobin (a), fasting plasma glucose (b),the course of disease (c), and the HOME-IR (d)
Fig. 5
Fig. 5
The relation assessment between SOD and parameters such as glycated hemoglobin (a), fasting plasma glucose (b), the course of disease (c) and the HOME-IR (d)
Fig. 6
Fig. 6
The relation assessment between GSH and parameters such as glycated hemoglobin (a), fasting plasma glucose (b), the course of disease (c), and the HOME-IR (d)

References

    1. Rathmann W, Giani G. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(10):2568–2569. doi: 10.2337/diacare.27.10.2568.
    1. Chu YW, Lin HM, Wang JJ, Weng SF, Lin CC, Chien CC. Epidemiology and outcomes of hypoglycemia in patients with advanced diabetic kidney disease on dialysis: a national cohort study. PLoS ONE. 2017;12(3):e0174601. doi: 10.1371/journal.pone.0174601.
    1. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–1625. doi: 10.2337/diabetes.54.6.1615.
    1. Esposito K, Giugliano D. Hyperglycemia and vascular damage role of oxidative stress. Recent Prog Med. 2002;93(3):172–174.
    1. Mehrotra S, Ling KL, Bekele Y, Gerbino E, Earle KA. Lipid hydroperoxide and markers of renal disease susceptibility in African-Caribbean and Caucasian patients with type 2 diabetes mellitus. Diabet Med. 2001;18(2):109–115. doi: 10.1046/j.1464-5491.2001.00416.x.
    1. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681–1687. doi: 10.1001/jama.295.14.1681.
    1. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–2572. doi: 10.1056/NEJMoa0802987.
    1. UK Prospective Diabetes Study Group Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ. 1998;317(7160):713–720. doi: 10.1136/bmj.317.7160.713.
    1. Corney SM, Dukatz T, Rosenblatt S, Harrison B, Murray R, Sakharova A, et al. Comparison of insulin pump therapy (continuous subcutaneous insulin infusion) to alternative methods for perioperative glycemic management in patients with planned postoperative admissions. J Diabetes Sci Technol. 2012;6(5):1003–1015. doi: 10.1177/193229681200600503.
    1. Bloomgarden ZT. Diabetic retinopathy and diabetic neuropathy. Diabetes Care. 2007;30(3):760–765. doi: 10.2337/dc07-zb03.
    1. Ray SD, Lam TS, Rotollo JA, Phadke S, Patel C, Dontabhaktuni A, et al. Oxidative stress is the master operator of drug and chemically-induced programmed and unprogrammed cell death: implications of natural antioxidants in vivo. BioFactors. 2004;21(1–4):223–232. doi: 10.1002/biof.552210144.
    1. Nishikawa T, Araki E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal. 2007;9(3):343–353. doi: 10.1089/ars.2006.1458.
    1. Dave GS, Kalia K. Hyperglycemia induced oxidative stress in type-1 and type-2 diabetic patients with and without nephropathy. Cell Mol Biol (Noisy-le-grand) 2007;53(5):68–78.
    1. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–1070. doi: 10.1161/CIRCRESAHA.110.223545.
    1. Queisser MA, Yao D, Geisler S, Hammes HP, Lochnit G, Schleicher ED, et al. Hyperglycemia impairs proteasome function by methylglyoxal. Diabetes. 2010;59(3):670–678. doi: 10.2337/db08-1565.
    1. Neumiller JJ, Hirsch IB. Management of hyperglycemia in diabetic kidney disease. Diabetes Spectr. 2015;28(3):214–219. doi: 10.2337/diaspect.28.3.214.
    1. Al-Aubaidy HA, Jelinek HF. Oxidative DNA damage and obesity in type 2 diabetes mellitus. Eur J Endocrinol. 2011;164(6):899–904. doi: 10.1530/EJE-11-0053.
    1. Zengi A, Ercan G, Caglayan O, Tamsel S, Karadeniz M, Simsir I, et al. Increased oxidative DNA damage in lean normoglycemic offspring of type 2 diabetic patients. Exp Clin Endocrinol Diabetes. 2011;119(8):467–471. doi: 10.1055/s-0031-1275289.
    1. Dickinson DA, Forman HJ. Cellular glutathione and thiols metabolism. Biochem Pharmacol. 2002;64(5–6):1019–1026. doi: 10.1016/S0006-2952(02)01172-3.
    1. Dincer Y, Alademir Z, Ilkova H, Akcay T. Susceptibility of glutatione and glutathione-related antioxidant activity to hydrogen peroxide in patients with type 2 diabetes: effect of glycemic control. Clin Biochem. 2002;35(4):297–301. doi: 10.1016/S0009-9120(02)00317-X.
    1. Verdile G, Keane KN, Cruzat VF, Medic S, Sabale M, Rowles J, et al. Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer's disease. Mediators inflamm. 2015;2015:105828–10.1155/2015/105828. doi: 10.1155/2015/105828.
    1. Li GW. Early intensive insulin therapy in newly diagnosed type 2 diabetes: the size of the problem. Zhonghua Nei Ke Za Zhi. 2010;49(1):1–2.
    1. Adaikalakoteswari A, Rema M, Mohan V, Balasubramanyam M. Oxidative DNA damage and augmentation of poly(ADP-ribose) polymerase/nuclear factor-kappa B signaling in patients with type 2 diabetes and microangiopathy. Int J Biochem Cell Biol. 2007;39(9):1673–1684. doi: 10.1016/j.biocel.2007.04.013.
    1. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339(2):69–75. doi: 10.1056/NEJM199807093390202.
    1. Xu Y, Osborne BW, Stanton RC. Diabetes causes inhibition of glucose-6-phosphate dehydrogenase via activation of PKA, which contributes to oxidative stress in rat kidney cortex. Am J Physiol Renal Physiol. 2005;289(5):F1040–F1047. doi: 10.1152/ajprenal.00076.2005.
    1. Sorensen SV, Frick KD, Wade A, Simko R, Burge R. Model-based simulation to explore the cost-effectiveness of following practice guidelines for triglyceride and low-density lipoprotein cholesterol control among patients with diabetes mellitus and mixed dyslipidemia. Clin Ther. 2009;31(4):862–879. doi: 10.1016/j.clinthera.2009.04.015.
    1. Schonfeld P, Wojtczak L. Brown adipose tissue mitochondria oxidizing fatty acids generate high levels of reactive oxygen species irrespective of the uncoupling protein-1 activity state. Biochim Biophys Acta. 2012;1817(3):410–418. doi: 10.1016/j.bbabio.2011.12.009.
    1. Barazzoni R, Zanetti M, Gortan Cappellari G, Semolic A, Boschelle M, Codarin E, et al. Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-kappaB inhibitor (IkappaB)-nuclear factor-kappaB (NFkappaB) activation in rat muscle, in the absence of mitochondrial dysfunction. Diabetologia. 2012;55(3):773–782. doi: 10.1007/s00125-011-2396-x.
    1. Yaney GC, Corkey BE. Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia. 2003;46(10):1297–1312. doi: 10.1007/s00125-003-1207-4.
    1. Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev. 2008;29(3):351–366. doi: 10.1210/er.2007-0023.
    1. Catalan V, Gomez-Ambrosi J, Ramirez B, Rotellar F, Pastor C, Silva C, et al. Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg. 2007;17(11):1464–1474. doi: 10.1007/s11695-008-9424-z.
    1. Chow FY, Nikolic-Paterson DJ, Ma FY, Ozols E, Rollins BJ, Tesch GH. Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia. 2007;50(2):471–480. doi: 10.1007/s00125-006-0497-8.

Source: PubMed

3
Subscribe