Effect of beta-adrenergic stimulation on whole-body and abdominal subcutaneous adipose tissue lipolysis in lean and obese men

J W E Jocken, G H Goossens, A M J van Hees, K N Frayn, M van Baak, J Stegen, M T W Pakbiers, W H M Saris, E E Blaak, J W E Jocken, G H Goossens, A M J van Hees, K N Frayn, M van Baak, J Stegen, M T W Pakbiers, W H M Saris, E E Blaak

Abstract

Aims/hypothesis: Obesity is characterised by increased triacylglycerol storage in adipose tissue. There is in vitro evidence for a blunted beta-adrenergically mediated lipolytic response in abdominal subcutaneous adipose tissue (SAT) of obese individuals and evidence for this at the whole-body level in vivo. We hypothesised that the beta-adrenergically mediated effect on lipolysis in abdominal SAT is also impaired in vivo in obese humans.

Methods: We investigated whole-body and abdominal SAT glycerol metabolism in vivo during 3 h and 6 h [2H5]glycerol infusions. Arterio-venous concentration differences were measured in 13 lean and ten obese men after an overnight fast and during intravenous infusion of the non-selective beta-adrenergic agonist isoprenaline [20 ng (kg fat free mass)(-1) min(-1)].

Results: Lean and obese participants showed comparable fasting glycerol uptake by SAT (9.7+/-3.4 vs 9.3+/-2.5% of total release, p=0.92). Furthermore, obese participants showed an increased whole-body beta-adrenergically mediated lipolytic response versus lean participants. However, their fasting lipolysis was blunted [glycerol rate of appearance: 7.3+/-0.6 vs 13.1+/-0.9 micromol (kg fat mass)(-1) min(-1), p<0.01], as was the beta-adrenergically mediated lipolytic response per unit SAT [Delta total glycerol release: 140+/-71 vs 394+/-112 nmol (100 g tissue)(-1) min(-1), p<0.05] compared with lean participants. Net triacylglycerol flux tended to increase in obese compared with lean participants during beta-adrenergic stimulation [Delta net triacylglycerol flux: 75+/-32 vs 16+/-11 nmol (100 g tissue)(-1) min(-1), p=0.06].

Conclusions/interpretation: We demonstrated in vivo that beta-adrenergically mediated lipolytic response is impaired systematically and in abdominal SAT of obese versus lean men. This may be important in the development or maintenance of increased triacylglycerol stores and obesity.

Figures

Fig. 1
Fig. 1
Plasma glycerol TTR during 6 h primed constant infusion of [2H5]glycerol (n = 3) in arterialised blood (squares) and blood draining from abdominal SAT (adipose vein; black circles). White circles, expected adipose vein enrichment. The measured adipose vein enrichment was consistently lower than the expected enrichment
Fig. 2
Fig. 2
Total glycerol uptake (a) and release (b) across abdominal SAT after an overnight fast (black bars) and during beta-adrenergic stimulation (white bars) in obese vs lean participants during 3 h [2H5]glycerol infusion. Values are mean ± SEM. *p < 0.05 for change (Δ) from baseline obese vs lean

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8178981', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8178981/'}]}
    2. Campbell PJ, Carlson MG, Nurjhan N (1994) Fat metabolism in human obesity. Am J Physiol 266:E600–E605
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10827018', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10827018/'}]}
    2. Horowitz JF, Klein S (2000) Whole body and abdominal lipolytic sensitivity to epinephrine is suppressed in upper body obese women. Am J Physiol Endocrinol Metab 278:E1144–E1152
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7915493', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7915493/'}]}
    2. Blaak EE, Van Baak MA, Kemerink GJ, Pakbiers MT, Heidendal GA, Saris WH (1994) beta-Adrenergic stimulation of energy expenditure and forearm skeletal muscle metabolism in lean and obese men. Am J Physiol 267:E306–E315
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7915494', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7915494/'}]}
    2. Blaak EE, Van Baak MA, Kemerink GJ, Pakbiers MT, Heidendal GA, Saris WH (1994) beta-Adrenergic stimulation of skeletal muscle metabolism in relation to weight reduction in obese men. Am J Physiol 267:E316–E322
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC508101', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc508101/'}, {'type': 'PubMed', 'value': '9169485', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9169485/'}]}
    2. Bougneres P, Stunff CL, Pecqueur C, Pinglier E, Adnot P, Ricquier D (1997) In vivo resistance of lipolysis to epinephrine. A new feature of childhood onset obesity. J Clin Invest 99:2568–2573
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2337/diabetes.49.12.2149', 'is_inner': False, 'url': 'https://doi.org/10.2337/diabetes.49.12.2149'}, {'type': 'PubMed', 'value': '11118019', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11118019/'}]}
    2. Enoksson S, Talbot M, Rife F, Tamborlane WV, Sherwin RS, Caprio S (2000) Impaired in vivo stimulation of lipolysis in adipose tissue by selective beta2-adrenergic agonist in obese adolescent girls. Diabetes 49:2149–2153
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/BF00403911', 'is_inner': False, 'url': 'https://doi.org/10.1007/bf00403911'}, {'type': 'PubMed', 'value': '8858214', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8858214/'}]}
    2. Hellstrom L, Langin D, Reynisdottir S, Dauzats M, Arner P (1996) Adipocyte lipolysis in normal weight subjects with obesity among first-degree relatives. Diabetologia 39:921–928
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8063046', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8063046/'}]}
    2. Reynisdottir S, Wahrenberg H, Carlstrom K, Rossner S, Arner P (1994) Catecholamine resistance in fat cells of women with upper-body obesity due to decreased expression of beta 2-adrenoceptors. Diabetologia 37:428–435
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8143428', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8143428/'}]}
    2. Kurpad A, Khan K, Calder AG et al (1994) Effect of noradrenaline on glycerol turnover and lipolysis in the whole body and subcutaneous adipose tissue in humans in vivo. Clin Sci (Lond) 86:177–184
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9950781', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/9950781/'}]}
    2. Coppack SW, Persson M, Judd RL, Miles JM (1999) Glycerol and nonesterified fatty acid metabolism in human muscle and adipose tissue in vivo. Am J Physiol 276:E233–E240
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1210/jc.2003-032053', 'is_inner': False, 'url': 'https://doi.org/10.1210/jc.2003-032053'}, {'type': 'PubMed', 'value': '15181043', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/15181043/'}]}
    2. Goossens GH, Blaak EE, Saris WH, van Baak MA (2004) Angiotensin II-induced effects on adipose and skeletal muscle tissue blood flow and lipolysis in normal-weight and obese subjects. J Clin Endocrinol Metab 89:2690–2696
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '5331269', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/5331269/'}]}
    2. Larsen OA, Lassen NA, Quaade F (1966) Blood flow through human adipose tissue determined with radioactive xenon. Acta Physiol Scand 66:337–345
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1161/01.HYP.0000256091.55393.92', 'is_inner': False, 'url': 'https://doi.org/10.1161/01.hyp.0000256091.55393.92'}, {'type': 'PubMed', 'value': '17224474', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/17224474/'}]}
    2. Goossens GH, Jocken JW, Blaak EE, Schiffers PM, Saris WH, van Baak MA (2007) Endocrine role of the renin–angiotensin system in human adipose tissue and muscle: effect of beta-adrenergic stimulation. Hypertension 49:542–547
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0026-0495(81)90074-3', 'is_inner': False, 'url': 'https://doi.org/10.1016/0026-0495(81)90074-3'}, {'type': 'PubMed', 'value': '7022111', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7022111/'}]}
    2. Abumrad NN, Rabin D, Diamond MP, Lacy WW (1981) Use of a heated superficial hand vein as an alternative site for the measurement of amino acid concentrations and for the study of glucose and alanine kinetics in man. Metabolism 30:936–940
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '2721118', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/2721118/'}]}
    2. Frayn KN, Coppack SW, Humphreys SM, Whyte PL (1989) Metabolic characteristics of human adipose tissue in vivo. Clin Sci (Lond) 76:509–516
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/BF00280883', 'is_inner': False, 'url': 'https://doi.org/10.1007/bf00280883'}, {'type': 'PubMed', 'value': '3899825', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/3899825/'}]}
    2. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10893334', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10893334/'}]}
    2. Blaak EE, Wagenmakers AJ, Glatz JF et al (2000) Plasma FFA utilization and fatty acid-binding protein content are diminished in type 2 diabetic muscle. Am J Physiol Endocrinol Metab 279:E146–E154
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/nm0703-811', 'is_inner': False, 'url': 'https://doi.org/10.1038/nm0703-811'}, {'type': 'PubMed', 'value': '12835685', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12835685/'}]}
    2. Tan GD, Debard C, Tiraby C et al (2003) A “futile cycle” induced by thiazolidinediones in human adipose tissue? Nat Med 9:811–812; author reply 812
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC294492', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc294492/'}, {'type': 'PubMed', 'value': '8200997', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8200997/'}]}
    2. Reynisdottir S, Ellerfeldt K, Wahrenberg H, Lithell H, Arner P (1994) Multiple lipolysis defects in the insulin resistance (metabolic) syndrome. J Clin Invest 93:2590–2599
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10553009', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10553009/'}]}
    2. Large V, Reynisdottir S, Langin D et al (1999) Decreased expression and function of adipocyte hormone-sensitive lipase in subcutaneous fat cells of obese subjects. J Lipid Res 40:2059–2066
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1210/jc.87.2.764', 'is_inner': False, 'url': 'https://doi.org/10.1210/jc.87.2.764'}, {'type': 'PubMed', 'value': '11836318', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11836318/'}]}
    2. Lofgren P, Hoffstedt J, Ryden M et al (2002) Major gender differences in the lipolytic capacity of abdominal subcutaneous fat cells in obesity observed before and after long-term weight reduction. J Clin Endocrinol Metab 87:764–771
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1210/jc.86.5.2191', 'is_inner': False, 'url': 'https://doi.org/10.1210/jc.86.5.2191'}, {'type': 'PubMed', 'value': '11344226', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11344226/'}]}
    2. Schiffelers SL, Saris WH, Boomsma F, van Baak MA (2001) beta(1)- and beta(2)-Adrenoceptor-mediated thermogenesis and lipid utilization in obese and lean men. J Clin Endocrinol Metab 86:2191–2199
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1042/BST20051045', 'is_inner': False, 'url': 'https://doi.org/10.1042/bst20051045'}, {'type': 'PubMed', 'value': '16246042', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/16246042/'}]}
    2. Karpe F, Tan GD (2005) Adipose tissue function in the insulin-resistance syndrome. Biochem Soc Trans 33:1045–1048
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0026-0495(00)80031-1', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0026-0495(00)80031-1'}, {'type': 'PubMed', 'value': '10831166', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10831166/'}]}
    2. Borsheim E, Lonnroth P, Knardahl S, Jansson PA (2000) No difference in the lipolytic response to beta-adrenoceptor stimulation in situ but a delayed increase in adipose tissue blood flow in moderately obese compared with lean men in the postexercise period. Metabolism 49:579–587
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/sj.ijo.802230', 'is_inner': False, 'url': 'https://doi.org/10.1038/sj.ijo.802230'}, {'type': 'PubMed', 'value': '12587003', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/12587003/'}]}
    2. Schiffelers SL, Akkermans JA, Saris WH, Blaak EE (2003) Lipolytic and nutritive blood flow response to beta-adrenoceptor stimulation in situ in subcutaneous abdominal adipose tissue in obese men. Int J Obes Relat Metab Disord 27:227–231
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1210/jc.87.5.2206', 'is_inner': False, 'url': 'https://doi.org/10.1210/jc.87.5.2206'}, {'type': 'PubMed', 'value': '11994365', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/11994365/'}]}
    2. Sjostrand M, Gudbjornsdottir S, Holmang A, Strindberg L, Ekberg K, Lonnroth P (2002) Measurements of interstitial muscle glycerol in normal and insulin-resistant subjects. J Clin Endocrinol Metab 87:2206–2211
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC535780', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc535780/'}, {'type': 'PubMed', 'value': '5475985', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/5475985/'}]}
    2. Havel RJ, Kane JP, Balasse EO, Segel N, Basso LV (1970) Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J Clin Invest 49:2017–2035
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10553007', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/10553007/'}]}
    2. Bulow J, Simonsen L, Wiggins D et al (1999) Co-ordination of hepatic and adipose tissue lipid metabolism after oral glucose. J Lipid Res 40:2034–2043
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8944669', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/8944669/'}]}
    2. Samra JS, Simpson EJ, Clark ML et al (1996) Effects of epinephrine infusion on adipose tissue: interactions between blood flow and lipid metabolism. Am J Physiol 271:E834–E839
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC185896', 'is_inner': False, 'url': 'http://www.ncbi.nlm.nih.gov/pmc/articles/pmc185896/'}, {'type': 'PubMed', 'value': '7593632', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/7593632/'}]}
    2. Yukht A, Davis RC, Ong JM, Ranganathan G, Kern PA (1995) Regulation of lipoprotein lipase translation by epinephrine in 3T3-L1 cells. Importance of the 3′ untranslated region. J Clin Invest 96:2438–2444
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1210/me.6.1.61', 'is_inner': False, 'url': 'https://doi.org/10.1210/me.6.1.61'}, {'type': 'PubMed', 'value': '1738372', 'is_inner': True, 'url': 'http://pubmed.ncbi.nlm.nih.gov/1738372/'}]}
    2. Ong JM, Saffari B, Simsolo RB, Kern PA (1992) Epinephrine inhibits lipoprotein lipase gene expression in rat adipocytes through multiple steps in posttranscriptional processing. Mol Endocrinol 6:61–69

Source: PubMed

3
Subscribe