Exploring the potential effect of paricalcitol on markers of inflammation in de novo renal transplant recipients

Hege Kampen Pihlstrøm, Thor Ueland, Annika E Michelsen, Pål Aukrust, Franscesca Gatti, Clara Hammarström, Monika Kasprzycka, Junbai Wang, Guttorm Haraldsen, Geir Mjøen, Dag Olav Dahle, Karsten Midtvedt, Ivar Anders Eide, Anders Hartmann, Hallvard Holdaas, Hege Kampen Pihlstrøm, Thor Ueland, Annika E Michelsen, Pål Aukrust, Franscesca Gatti, Clara Hammarström, Monika Kasprzycka, Junbai Wang, Guttorm Haraldsen, Geir Mjøen, Dag Olav Dahle, Karsten Midtvedt, Ivar Anders Eide, Anders Hartmann, Hallvard Holdaas

Abstract

Following a successful renal transplantation circulating markers of inflammation may remain elevated, and systemic inflammation is associated with worse clinical outcome in renal transplant recipients (RTRs). Vitamin D-receptor (VDR) activation is postulated to modulate inflammation and endothelial function. We aimed to explore if a synthetic vitamin D, paricalcitol, could influence systemic inflammation and immune activation in RTRs. Newly transplanted RTRs were included in an open-label randomized controlled trial on the effect of paricalcitol on top of standard care over the first post-transplant year. Fourteen pre-defined circulating biomarkers reflecting leukocyte activation, endothelial activation, fibrosis and general inflammatory burden were analyzed in 74 RTRs at 8 weeks (baseline) and 1 year post-engraftment. Mean changes in plasma biomarker concentrations were compared by t-test. The expression of genes coding for the same biomarkers were investigated in 1-year surveillance graft biopsies (n = 60). In patients treated with paricalcitol circulating osteoprotegerin levels increased by 0.19 ng/ml, compared with a 0.05 ng/ml increase in controls (p = 0.030). In graft tissue, a 21% higher median gene expression level of TNFRSF11B coding for osteoprotegerin was found in paricalcitol-treated patients compared with controls (p = 0.026). Paricalcitol treatment did not significantly affect the blood- or tissue levels of any other investigated inflammatory marker. In RTRs, paricalcitol treatment might increase both circulating and tissue levels of osteoprotegerin, a modulator of calcification, but potential anti-inflammatory treatment effects in RTRs are likely very modest. [NCT01694160 (2012/107D)]; [www.clinicaltrials.gov].

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Changes in levels of osteoprotegerin…
Fig 1. Changes in levels of osteoprotegerin across the study period.
Osteoprotegerin change (ng/nl) in patients treated with paricalcitol vs patients receiving no extra treatment; median (horizontal line), interquartile range (blue box), outlier (°).
Fig 2. Heat map of inflammatory marker…
Fig 2. Heat map of inflammatory marker gene expression levels in graft tissue.
The expression of 15 genes coding for 13 inflammatory biomarkers in 30 treated patients (to the left) vs 30 patients in the control group (to the right). Darker color indicates higher expression levels. Z-scores of duplicated genes in the array are averaged. Genes coding for proteins with different nomenclature: ACVR1/ACVR1B/ ACVR1C, activin A receptor subunits; ANGPT2, angiopoietin-2; COL18A1, endostatin; LCN2, neutrophil gelatinase-associated lipocalin (NGAL); LGALS3, galectin-3; TNFRSF11B, osteoprotegerin; TNFRSF1A, soluble tumor necrosis factor receptor-1 (sTNFr1).

References

    1. Yeun JY, Levine RA, Mantadilok V, Kaysen GA. C-Reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am J Kidney Dis. 2000;35(3):469–76. 10.1016/s0272-6386(00)70200-9 .
    1. Vaziri ND. Oxidative stress in uremia: nature, mechanisms, and potential consequences. Semin Nephrol. 2004;24(5):469–73. 10.1016/j.semnephrol.2004.06.026 .
    1. Tomlinson JAP, Wheeler DC. The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease. Kidney Int. 2017;92(4):809–15. 10.1016/j.kint.2017.03.053 .
    1. Tabriziani H, Lipkowitz MS, Vuong N. Chronic kidney disease, kidney transplantation and oxidative stress: a new look to successful kidney transplantation. Clin Kidney J. 2018;11(1):130–5. 10.1093/ckj/sfx091
    1. Gennip A, Broers NJH, Meulen KJT, Canaud B, Christiaans MHL, Cornelis T, et al. Endothelial dysfunction and low-grade inflammation in the transition to renal replacement therapy. PLoS One. 2019;14(9):e0222547 10.1371/journal.pone.0222547
    1. Canas L, Iglesias E, Pastor MC, Barallat J, Juega J, Bancu I, et al. Inflammation and oxidation: do they improve after kidney transplantation? Relationship with mortality after transplantation. Int Urol Nephrol. 2017;49(3):533–40. 10.1007/s11255-016-1435-4 .
    1. van Riemsdijk-van Overbeeke IC, Baan CC, Loonen EH, Hesse CJ, Zietse R, van Gelder T, et al. The TNF-alpha system after successful living-related kidney transplantation. Transpl Int. 1998;11 Suppl 1:S46–9. 10.1007/s001470050424 .
    1. Lund KP, von Stemann JH, Eriksson F, Hansen MB, Pedersen BK, Sorensen SS, et al. IL-10-specific autoantibodies predict major adverse cardiovascular events in kidney transplanted patients—a retrospective cohort study. Transpl Int. 2019;32(9):933–48. 10.1111/tri.13425 .
    1. Mansell H, Rosaasen N, Dean J, Shoker A. Evidence of enhanced systemic inflammation in stable kidney transplant recipients with low Framingham risk scores. Clin Transplant. 2013;27(4):E391–9. 10.1111/ctr.12159 .
    1. Abedini S, Holme I, Marz W, Weihrauch G, Fellstrom B, Jardine A, et al. Inflammation in renal transplantation. Clin J Am Soc Nephrol. 2009;4(7):1246–54. 10.2215/CJN.00930209
    1. Pihlstrom H, Mjoen G, Marz W, Olav Dahle D, Abedini S, Holme I, et al. Neopterin is associated with cardiovascular events and all-cause mortality in renal transplant patients. Clin Transplant. 2014;28(1):111–9. 10.1111/ctr.12285
    1. Grebe SO, Kuhlmann U, Fogl D, Luyckx VA, Mueller TF. Macrophage activation is associated with poorer long-term outcomes in renal transplant patients. Clin Transplant. 2011;25(5):744–54. 10.1111/j.1399-0012.2010.01345.x .
    1. Tagliabue E, Raimondi S, Gandini S. Vitamin D, Cancer Risk, and Mortality. Adv Food Nutr Res. 2015;75:1–52. 10.1016/bs.afnr.2015.06.003 .
    1. Kalluri HV, Sacha LM, Ingemi AI, Shullo MA, Johnson HJ, Sood P, et al. Low vitamin D exposure is associated with higher risk of infection in renal transplant recipients. Clin Transplant. 2017;31(5). 10.1111/ctr.12955 .
    1. Watkins RR, Lemonovich TL, Salata RA. An update on the association of vitamin D deficiency with common infectious diseases. Can J Physiol Pharmacol. 2015;93(5):363–8. 10.1139/cjpp-2014-0352 .
    1. Ishikawa LLW, Colavite PM, Fraga-Silva TFC, Mimura LAN, Franca TGD, Zorzella-Pezavento SFG, et al. Vitamin D Deficiency and Rheumatoid Arthritis. Clin Rev Allergy Immunol. 2017;52(3):373–88. 10.1007/s12016-016-8577-0 .
    1. Muscogiuri G, Annweiler C, Duval G, Karras S, Tirabassi G, Salvio G, et al. Vitamin D and cardiovascular disease: From atherosclerosis to myocardial infarction and stroke. Int J Cardiol. 2017;230:577–84. 10.1016/j.ijcard.2016.12.053 .
    1. Walsh JS, Bowles S, Evans AL. Vitamin D in obesity. Curr Opin Endocrinol Diabetes Obes. 2017;24(6):389–94. 10.1097/MED.0000000000000371 .
    1. Berridge MJ. Vitamin D deficiency and diabetes. Biochem J. 2017;474(8):1321–32. 10.1042/BCJ20170042 .
    1. Manson JE, Bassuk SS, Lee IM, Cook NR, Albert MA, Gordon D, et al. The VITamin D and OmegA-3 TriaL (VITAL): rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease. Contemp Clin Trials. 2012;33(1):159–71. 10.1016/j.cct.2011.09.009
    1. Neale RE, Armstrong BK, Baxter C, Duarte Romero B, Ebeling P, English DR, et al. The D-Health Trial: A randomized trial of vitamin D for prevention of mortality and cancer. Contemp Clin Trials. 2016;48:83–90. 10.1016/j.cct.2016.04.005 .
    1. Kawahara T, Suzuki G, Inazu T, Mizuno S, Kasagi F, Okada Y, et al. Rationale and design of Diabetes Prevention with active Vitamin D (DPVD): a randomised, double-blind, placebo-controlled study. BMJ Open. 2016;6(7):e011183 10.1136/bmjopen-2016-011183
    1. Ponticelli C, Sala G. Vitamin D: a new player in kidney transplantation? Expert Rev Clin Immunol. 2014;10(10):1375–83. 10.1586/1744666X.2014.949674 .
    1. Sarno G, Daniele G, Tirabassi G, Chavez AO, Ojo OO, Orio F, et al. The impact of vitamin D deficiency on patients undergoing kidney transplantation: focus on cardiovascular, metabolic, and endocrine outcomes. Endocrine. 2015;50(3):568–74. 10.1007/s12020-015-0632-8 .
    1. de Zeeuw D, Agarwal R, Amdahl M, Audhya P, Coyne D, Garimella T, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet. 2010;376(9752):1543–51. 10.1016/S0140-6736(10)61032-X .
    1. Gonzalez E, Rojas-Rivera J, Polanco N, Morales E, Morales JM, Egido J, et al. Effects of oral paricalcitol on secondary hyperparathyroidism and proteinuria of kidney transplant patients. Transplantation. 2013;95(7):e49–52. 10.1097/TP.0b013e3182855565 .
    1. Eleftheriadis T, Antoniadi G, Liakopoulos V, Kartsios C, Stefanidis I, Galaktidou G. Paricalcitol reduces basal and lipopolysaccharide-induced (LPS) TNF-alpha and IL-8 production by human peripheral blood mononuclear cells. Int Urol Nephrol. 2010;42(1):181–5. 10.1007/s11255-009-9541-1 .
    1. Park JW, Bae EH, Kim IJ, Ma SK, Choi C, Lee J, et al. Paricalcitol attenuates cyclosporine-induced kidney injury in rats. Kidney Int. 2010;77(12):1076–85. 10.1038/ki.2010.69 .
    1. Donate-Correa J, Henriquez-Palop F, Martin-Nunez E, Hernandez-Carballo C, Ferri C, Perez-Delgado N, et al. Anti-inflammatory profile of paricalcitol in kidney transplant recipients. Nefrologia. 2017;37(6):622–9. 10.1016/j.nefro.2017.03.028 .
    1. Oblak M, Mlinsek G, Kandus A, Buturovic-Ponikvar J, Arnol M. Effects of paricalcitol on biomarkers of inflammation and fibrosis in kidney transplant recipients: results of a randomized controlled trial. Clin Nephrol. 2017;88(13):119–25. 10.5414/CNP88FX26 .
    1. Pihlstrom HK, Gatti F, Hammarstrom C, Eide IA, Kasprzycka M, Wang J, et al. Early introduction of oral paricalcitol in renal transplant recipients. An open-label randomized study. Transpl Int. 2017;30(8):827–40. 10.1111/tri.12973 .
    1. Batmanov K, Wang W, Bjoras M, Delabie J, Wang J. Integrative whole-genome sequence analysis reveals roles of regulatory mutations in BCL6 and BCL2 in follicular lymphoma. Sci Rep. 2017;7(1):7040 10.1038/s41598-017-07226-4
    1. Wang J. Computational biology of genome expression and regulation—a review of microarray bioinformatics. J Environ Pathol Toxicol Oncol. 2008;27(3):157–79. 10.1615/jenvironpatholtoxicoloncol.v27.i3.10 .
    1. Mathieu C, Adorini L. The coming of age of 1,25-dihydroxyvitamin D(3) analogs as immunomodulatory agents. Trends Mol Med. 2002;8(4):174–9. 10.1016/s1471-4914(02)02294-3 .
    1. Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334–8. 10.1006/abbi.1999.1605 .
    1. Nieuwland AJ, Kokje VB, Koning OH, Hamming JF, Szuhai K, Claas FH, et al. Activation of the vitamin D receptor selectively interferes with calcineurin-mediated inflammation: a clinical evaluation in the abdominal aortic aneurysm. Lab Invest. 2016;96(7):784–90. 10.1038/labinvest.2016.55 .
    1. Lucisano S, Arena A, Stassi G, Iannello D, Montalto G, Romeo A, et al. Role of Paricalcitol in Modulating the Immune Response in Patients with Renal Disease. Int J Endocrinol. 2015;2015:765364 10.1155/2015/765364
    1. Alborzi P, Patel NA, Peterson C, Bills JE, Bekele DM, Bunaye Z, et al. Paricalcitol reduces albuminuria and inflammation in chronic kidney disease: a randomized double-blind pilot trial. Hypertension. 2008;52(2):249–55. 10.1161/HYPERTENSIONAHA.108.113159 .
    1. Pinera-Haces C, Izquierdo-Ortiz MJ, Martin-de Francisco AL, Garcia-Unzueta MT, Lopez-Hoyos M, Toyos C, et al. Double treatment with paricalcitol-associated calcifediol and cardiovascular risk biomarkers in haemodialysis. Nefrologia. 2013;33(1):77–84. 10.3265/Nefrologia.pre2012.Sep.11533 .
    1. Navarro-Gonzalez JF, Donate-Correa J, Mendez ML, de Fuentes MM, Garcia-Perez J, Mora-Fernandez C. Anti-inflammatory profile of paricalcitol in hemodialysis patients: a prospective, open-label, pilot study. J Clin Pharmacol. 2013;53(4):421–6. 10.1002/jcph.19 .
    1. Mansouri L, Lundwall K, Moshfegh A, Jacobson SH, Lundahl J, Spaak J. Vitamin D receptor activation reduces inflammatory cytokines and plasma MicroRNAs in moderate chronic kidney disease—a randomized trial. BMC Nephrol. 2017;18(1):161 10.1186/s12882-017-0576-8
    1. Perez V, Sanchez-Escuredo A, Lauzurica R, Bayes B, Navarro-Munoz M, Pastor MC, et al. Magnetic bead-based proteomic technology to study paricalcitol effect in kidney transplant recipients. Eur J Pharmacol. 2013;709(1–3):72–9. 10.1016/j.ejphar.2013.03.040 .
    1. Tan X, Li Y, Liu Y. Paricalcitol attenuates renal interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol. 2006;17(12):3382–93. 10.1681/ASN.2006050520 .
    1. Amer H, Griffin MD, Stegall MD, Cosio FG, Park WD, Kremers WK, et al. Oral paricalcitol reduces the prevalence of posttransplant hyperparathyroidism: results of an open label randomized trial. Am J Transplant. 2013;13(6):1576–85. 10.1111/ajt.12227 .
    1. Swetha R, Gayen C, Kumar D, Singh TD, Modi G, Singh SK. Biomolecular basis of matrix metallo proteinase-9 activity. Future Med Chem. 2018;10(9):1093–112. 10.4155/fmc-2017-0236 .
    1. Jonsson S, Lundberg A, Kalvegren H, Bergstrom I, Szymanowski A, Jonasson L. Increased levels of leukocyte-derived MMP-9 in patients with stable angina pectoris. PLoS One. 2011;6(4):e19340 10.1371/journal.pone.0019340
    1. Feng X, Lv C, Wang F, Gan K, Zhang M, Tan W. Modulatory effect of 1,25-dihydroxyvitamin D 3 on IL1 beta -induced RANKL, OPG, TNF alpha, and IL-6 expression in human rheumatoid synoviocyte MH7A. Clin Dev Immunol. 2013;2013:160123 10.1155/2013/160123
    1. Hansen D, Rasmussen K, Rasmussen LM, Bruunsgaard H, Brandi L. The influence of vitamin D analogs on calcification modulators, N-terminal pro-B-type natriuretic peptide and inflammatory markers in hemodialysis patients: a randomized crossover study. BMC Nephrol. 2014;15:130 10.1186/1471-2369-15-130
    1. Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9 Suppl 1:S1 10.1186/ar2165
    1. Lee J, Lee S, Lee CY, Seo HH, Shin S, Choi JW, et al. Adipose-derived stem cell-released osteoprotegerin protects cardiomyocytes from reactive oxygen species-induced cell death. Stem Cell Res Ther. 2017;8(1):195 10.1186/s13287-017-0647-6
    1. Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The Role of Osteoprotegerin and Its Ligands in Vascular Function. Int J Mol Sci. 2019;20(3). 10.3390/ijms20030705
    1. Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C. The role of osteoprotegerin in the crosstalk between vessels and bone: Its potential utility as a marker of cardiometabolic diseases. Pharmacol Ther. 2018;182:115–32. 10.1016/j.pharmthera.2017.08.015 .
    1. Toffoli B, Pickering RJ, Tsorotes D, Wang B, Bernardi S, Kantharidis P, et al. Osteoprotegerin promotes vascular fibrosis via a TGF-beta1 autocrine loop. Atherosclerosis. 2011;218(1):61–8. 10.1016/j.atherosclerosis.2011.05.019 .
    1. Mortlock S. Matrix metalloprotease-9: defining a normal reference range. Sch J App Med Sci. 2016;4:4146–50.
    1. Dunkler D, Haller M, Oberbauer R, Heinze G. To test or to estimate? P-values versus effect sizes. Transpl Int. 2019. 10.1111/tri.13535 .

Source: PubMed

3
Subscribe