Scaling up Action Schools! BC: How Does Voltage Drop at Scale Affect Student Level Outcomes? A Cluster Randomized Controlled Trial

Lindsay Nettlefold, Patti-Jean Naylor, Heather M Macdonald, Heather A McKay, Lindsay Nettlefold, Patti-Jean Naylor, Heather M Macdonald, Heather A McKay

Abstract

Action Schools! BC (AS! BC) was scaled-up from an efficacy trial to province-wide delivery across 11 years (2004-2015). In this study we: (1) describe strategies that supported implementation and scale-up; (2) evaluate implementation (teachers' physical activity (PA) delivery) and student's PA and cardiorespiratory fitness (CRF) within a cluster randomized controlled trial during years 2 and 3 of scale-up; and (3) assess relationships between teacher-level implementation and student-level outcomes. We classified implementation strategies as process, capacity-building or scale-up strategies. Elementary schools (n = 30) were randomized to intervention (INT; 16 schools; 747 students) or usual practice (UP; 14 schools; 782 students). We measured teachers' PA delivery (n = 179) using weekly logs; students' PA by questionnaire (n = 30 schools) and accelerometry (n = 9 schools); and students' CRF by 20-m shuttle run (n = 25 schools). INT teachers delivered more PA than UP teachers in year 1 (+33.8 min/week, 95% CI 12.7, 54.9) but not year 2 (+18.8 min/week, 95% CI -0.8, 38.3). Unadjusted change in CRF was 36% and 27% higher in INT girls and boys, respectively, compared with their UP peers (year 1; effect size 0.28-0.48). Total PA delivered was associated with change in children's self-reported MVPA (year 1; r = 0.17, p = 0.02). Despite the 'voltage drop', scaling-up school-based PA models is feasible and may enhance children's health. Stakeholders must conceive of new ways to effectively sustain scaled-up health promoting interventions if we are to improve the health of students at a population level. Clinical Trials registration: NCT01412203.

Keywords: children; effectiveness; fitness; implementation strategies; intervention; physical activity; scale-up; school.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Timeline of Action Schools! BC (AS! BC) scale-up and the randomized controlled effectiveness trial. Open triangles indicate dates where we report implementation strategies and scale-up data (end of first, second, third and final year of scale-up; objective 1). Circles indicate the start of each data collection period within the randomized controlled effectiveness trial (objectives 2 and 3); closed circles represent the beginning (T1) and end (T2) of year 1, open circles represent the beginning (T3) and end (T4) of year 2.
Figure 2
Figure 2
CONSORT diagram illustrating flow of schools through study. * 3 girls at UP schools consented to accelerometry only. † Details on follow-up and analysis at the student-level are described in text and tables for each outcome.

References

    1. Chaput J.P., Willumsen J., Bull F., Chou R., Ekelund U., Firth J., Jago R., Ortega F.B., Katzmarzyk P.T. 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: Summary of the evidence. Int. J. Behav. Nutr. Phys. Act. 2020;17:141. doi: 10.1186/s12966-020-01037-z.
    1. Ortega F.B., Ruiz J.R., Castillo M.J., Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. Int. J. Obes. 2008;32:1–11. doi: 10.1038/sj.ijo.0803774.
    1. Steele R.M., Brage S., Corder K., Wareham N.J., Ekelund U. Physical activity, cardiorespiratory fitness, and the metabolic syndrome in youth. J. Appl. Physiol. 2008;105:342–351. doi: 10.1152/japplphysiol.00072.2008.
    1. Colley R.C., Carson V., Garriguet D., Janssen I., Roberts K.C., Tremblay M.S. Physical activity of Canadian children and youth, 2007 to 2015. Health Rep. 2017;28:8–16.
    1. Cameron C., Craig C.L., Bauman A., Tudor-Locke C. CANPLAY study: Secular trends in steps/day amongst 5-19 year-old Canadians between 2005 and 2014. Prev. Med. 2016;86:28–33. doi: 10.1016/j.ypmed.2015.12.020.
    1. Knuth A.G., Hallal P.C. Temporal trends in physical activity: a systematic review. J. Phys. Act. Health. 2009;6:548–559. doi: 10.1123/jpah.6.5.548.
    1. Tomkinson G.R., Lang J.J., Tremblay M.S. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br. J. Sports Med. 2019;53:478–486. doi: 10.1136/bjsports-2017-097982.
    1. Craig C.L., Shields M., Leblanc A.G., Tremblay M.S. Trends in aerobic fitness among Canadians, 1981 to 2007–2009. Appl. Physiol. Nutr. Metab. 2012;37:511–519. doi: 10.1139/h2012-023.
    1. Jones R.A., Hinkley T., Okely A.D., Salmon J. Tracking physical activity and sedentary behavior in childhood: a systematic review. Am. J. Prev. Med. 2013;44:651–658. doi: 10.1016/j.amepre.2013.03.001.
    1. Janz K.F., Dawson J.D., Mahoney L.T. Tracking physical fitness and physical activity from childhood to adolescence: the muscatine study. Med. Sci. Sports Exerc. 2000;32:1250–1257. doi: 10.1097/00005768-200007000-00011.
    1. Andersen L.B., Hasselstrom H., Gronfeldt V., Hansen S.E., Karsten F. The relationship between physical fitness and clustered risk, and tracking of clustered risk from adolescence to young adulthood: eight years follow-up in the Danish Youth and Sport Study. Int. J. Behav. Nutr. Phys. Act. 2004;1:6. doi: 10.1186/1479-5868-1-6.
    1. Telama R., Yang X., Leskinen E., Kankaanpaa A., Hirvensalo M., Tammelin T., Viikari J.S., Raitakari O.T. Tracking of physical activity from early childhood through youth into adulthood. Med. Sci. Sports Exerc. 2014;46:955–962. doi: 10.1249/MSS.0000000000000181.
    1. Hogstrom G., Nordstrom A., Nordstrom P. Aerobic fitness in late adolescence and the risk of early death: a prospective cohort study of 1.3 million Swedish men. Int. J. Epidemiol. 2016;45:1159–1168. doi: 10.1093/ije/dyv321.
    1. Hogstrom G., Nordstrom A., Nordstrom P. High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infarction later in life: a nationwide cohort study in men. Eur. Heart J. 2014;35:3133–3140. doi: 10.1093/eurheartj/eht527.
    1. Hogstrom G., Ohlsson H., Crump C., Sundquist J., Sundquist K. Aerobic fitness in late adolescence and the risk of cancer and cancer-associated mortality in adulthood: A prospective nationwide study of 1.2 million Swedish men. Cancer Epidemiol. 2019;59:58–63. doi: 10.1016/j.canep.2019.01.012.
    1. Naylor P.J., McKay H.A. Prevention in the first place: schools a setting for action on physical inactivity. Br. J. Sports Med. 2009;43:10–13. doi: 10.1136/bjsm.2008.053447.
    1. International Society for Physical Activity and Health (ISPAH) Eight Investments that Work for Physical Activity. [(accessed on 30 November 2020)];2020 Available online: .
    1. Fox K.R., Cooper A., McKenna J. The School and Promotion of Children’s Health-Enhancing Physical Activity: Perspectives from the United Kingdom. J. Teach Phys. Educ. 2004;23:338–358. doi: 10.1123/jtpe.23.4.338.
    1. Reis R.S., Salvo D., Ogilvie D., Lambert E.V., Goenka S., Brownson R.C. Scaling up physical activity interventions worldwide: stepping up to larger and smarter approaches to get people moving. Lancet. 2016;388:1337–1348. doi: 10.1016/S0140-6736(16)30728-0.
    1. Naylor P.J., Nettlefold L., Race D., Hoy C., Ashe M.C., Higgins J.W., McKay H. Implementation of school based physical activity interventions: A systematic review. Prev. Med. 2015;72:95–115. doi: 10.1016/j.ypmed.2014.12.034.
    1. Cassar S., Salmon J., Timperio A., Naylor P.J., van Nassau F., Contardo Ayala A.M., Koorts H. Adoption, implementation and sustainability of school-based physical activity and sedentary behaviour interventions in real-world settings: a systematic review. Int. J. Behav. Nutr. Phys. Act. 2019;16:120. doi: 10.1186/s12966-019-0876-4.
    1. Love R., Adams J., van Sluijs E.M.F. Are school-based physical activity interventions effective and equitable? A meta-analysis of cluster randomized controlled trials with accelerometer-assessed activity. Obes. Rev. 2019;20:859–870. doi: 10.1111/obr.12823.
    1. Durlak J.A., DuPre E.P. Implementation matters: a review of research on the influence of implementation on program outcomes and the factors affecting implementation. Am. J. Community Psychol. 2008;41:327–350. doi: 10.1007/s10464-008-9165-0.
    1. Lane C., McCrabb S., Nathan N., Naylor P.J., Bauman A., Milat A., Lum M., Sutherland R., Byaruhanga J., Wolfenden L. How effective are physical activity interventions when they are scaled-up: a systematic review. Int. J. Behav. Nutr. Phys. Act. 2021;18:16. doi: 10.1186/s12966-021-01080-4.
    1. Herlitz L., MacIntyre H., Osborn T., Bonell C. The sustainability of public health interventions in schools: a systematic review. Implement. Sci. 2020;15:4. doi: 10.1186/s13012-019-0961-8.
    1. Milat A.J., King L., Newson R., Wolfenden L., Rissel C., Bauman A., Redman S. Increasing the scale and adoption of population health interventions: experiences and perspectives of policy makers, practitioners, and researchers. Health Res. Policy Syst. 2014;12:18. doi: 10.1186/1478-4505-12-18.
    1. Naylor P.J., Macdonald H., Reed K.E., McKay H. Action Schools! BC: A Socioecological Approach to Modifying Chronic Disease Risk Factors in Elementary School Children. Prev. Chronic Dis. 2006;3:A60.
    1. Naylor P.J., Macdonald H.M., Zebedee J.A., Reed K.E., McKay H.A. Lessons learned from Action Schools! BC--an ‘active school’ model to promote physical activity in elementary schools. J. Sci. Med. Sport. 2006;9:413–423. doi: 10.1016/j.jsams.2006.06.013.
    1. Naylor P.J., Macdonald H.M., Warburton D.E., Reed K.E., McKay H.A. An active school model to promote physical activity in elementary schools: Action Schools! BC. Br. J. Sports Med. 2008;42:338–343. doi: 10.1136/bjsm.2007.042036.
    1. Reed K.E., Warburton D.E.R., Macdonald H.M., Naylor P.J., McKay H.A. Action Schools! BC: A school-based physical activity intervention designed to decrease cardiovascular disease risk factors in children. Prev. Med. 2008;46:525–531. doi: 10.1016/j.ypmed.2008.02.020.
    1. Macdonald H.M., Kontulainen S.A., Petit M.A., Beck T.J., Khan K.M., McKay H.A. Does a novel school-based physical activity model benefit femoral neck bone strength in pre- and early pubertal children? Osteoporos. Int. 2008;19:1445–1456. doi: 10.1007/s00198-008-0589-z.
    1. Ahamed Y., Macdonald H., Reed K., Naylor P.J., Liu-Ambrose T., McKay H. School-based physical activity does not compromise children’s academic performance. Med. Sci. Sports Exerc. 2007;39:371–376. doi: 10.1249/01.mss.0000241654.45500.8e.
    1. Indig D., Lee K., Grunseit A., Milat A., Bauman A. Pathways for scaling up public health interventions. BMC Public Health. 2018;18:68. doi: 10.1186/s12889-017-4572-5.
    1. McKay H.A., Macdonald H.M., Nettlefold L., Masse L.C., Day M., Naylor P.J. Action Schools! BC implementation: from efficacy to effectiveness to scale-up. Br. J. Sports Med. 2015;49:210–218. doi: 10.1136/bjsports-2013-093361.
    1. Powell B.J., Fernandez M.E., Williams N.J., Aarons G.A., Beidas R.S., Lewis C.C., McHugh S.M., Weiner B.J. Enhancing the Impact of Implementation Strategies in Healthcare: A Research Agenda. Front. Public Health. 2019;7:3. doi: 10.3389/fpubh.2019.00003.
    1. Wandersman A., Duffy J., Flaspohler P., Noonan R., Lubell K., Stillman L., Blachman M., Dunville R., Saul J. Bridging the gap between prevention research and practice: The interactive systems framework for dissemination and implementation. Am. J. Community Psychol. 2008;41:171–181. doi: 10.1007/s10464-008-9174-z.
    1. Simmons R., Shiffman J. Chapter 1: Scaling up health service innovations: a framework for action. In: Simmons R., Fajans P., Ghiron L., editors. Scaling up Health Service Delivery: From Pilot Innovations to Policies and Programmes. World Health Organization; Geneva, Switzerland: 2007. pp. 1–30.
    1. Day M.E., Strange K.S., McKay H.A., Naylor P.J. Action schools! BC--Healthy Eating: effects of a whole-school model to modifying eating behaviours of elementary school children. Can. J. Public Health. 2008;99:328–331. doi: 10.1007/BF03403766.
    1. Powell B.J., Waltz T.J., Chinman M.J., Damschroder L.J., Smith J.L., Matthieu M.M., Proctor E.K., Kirchner J.E. A refined compilation of implementation strategies: results from the Expert Recommendations for Implementing Change (ERIC) project. Implement. Sci. 2015;10:21. doi: 10.1186/s13012-015-0209-1.
    1. Leeman J., Birken S.A., Powell B.J., Rohweder C., Shea C.M. Beyond "implementation strategies": classifying the full range of strategies used in implementation science and practice. Implement. Sci. 2017;12:125. doi: 10.1186/s13012-017-0657-x.
    1. Proctor E.K., Powell B.J., McMillen J.C. Implementation strategies: recommendations for specifying and reporting. Implement. Sci. 2013;8:139. doi: 10.1186/1748-5908-8-139.
    1. Curran G.M., Bauer M., Mittman B., Pyne J.M., Stetler C. Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact. Med. Care. 2012;50:217–226. doi: 10.1097/MLR.0b013e3182408812.
    1. Crocker P.R., Bailey D.A., Faulkner R.A., Kowalski K.C., McGrath R. Measuring general levels of physical activity: preliminary evidence for the Physical Activity Questionnaire for Older Children. Med. Sci. Sports Exerc. 1977;29:1344–1349. doi: 10.1097/00005768-199710000-00011.
    1. Mackelvie K.J., McKay H.A., Khan K.M., Crocker P.R. A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J. Pediatr. 2001;139:501–508. doi: 10.1067/mpd.2001.118190.
    1. Trost S.G., Loprinzi P.D., Moore R., Pfeiffer K.A. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011;43:1360–1368. doi: 10.1249/MSS.0b013e318206476e.
    1. Evenson K.R., Catellier D.J., Gill K., Ondrak K.S., McMurray R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008;26:1557–1565. doi: 10.1080/02640410802334196.
    1. World Health Organization . WHO Guidelines on Physical Activity and Sedentary Behaviour. World Health Organization; Geneva, Switzerland: 2020.
    1. Leger L.A., Mercier D., Gadoury C., Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988;6:93–101. doi: 10.1080/02640418808729800.
    1. Olds T., Tomkinson G., Leger L., Cazorla G. Worldwide variation in the performance of children and adolescents: an analysis of 109 studies of the 20-m shuttle run test in 37 countries. J. Sports Sci. 2006;24:1025–1038. doi: 10.1080/02640410500432193.
    1. Moore S.A., McKay H.A., Macdonald H., Nettlefold L., Baxter-Jones A.D., Cameron N., Brasher P.M. Enhancing a Somatic Maturity Prediction Model. Med. Sci. Sports Exerc. 2015;47:1755–1764. doi: 10.1249/MSS.0000000000000588.
    1. Ip F. Ethnicity and Visible Minority Characteristics of BC’s Population. 2006 Census Fast Facts. 2006-12. BC Stats; Victoria, BC, Canada: 2008.
    1. Cohen J. A power primer. Psychol. Bull. 1992;112:155–159. doi: 10.1037/0033-2909.112.1.155.
    1. Linden A. ESIZEREG: Stata Module for Computing the Effect Size Based on a Linear Regression Coefficient. Boston College Department of Economics; Chestnut Hill, MA, USA: 2019.
    1. Sullivan G.M., Feinn R. Using Effect Size-or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012;4:279–282. doi: 10.4300/JGME-D-12-00156.1.
    1. Global Advocacy for Physical Activity (GAPA) The Advocacy Council of the International Society for Physical Activity and Health (ISPAH) NCD Prevention: Investments that work for physical activity. Br. J. Sports Med.
    1. Keshavarz N., Nutbeam D., Rowling L., Khavarpour F. Schools as social complex adaptive systems: A new way to understand the challenges of introducing the health promoting schools concept. Soc. Sci. Med. 2010;70:1467–1474. doi: 10.1016/j.socscimed.2010.01.034.
    1. Lee K., van Nassau F., Grunseit A., Conte K., Milat A., Wolfenden L., Bauman A. Scaling up population health interventions from decision to sustainability - a window of opportunity? A qualitative view from policy-makers. Health Res. Policy Syst. 2020;18:118. doi: 10.1186/s12961-020-00636-3.
    1. Neely K.C., Montemurro G.R., Storey K.E. A Canadian-wide perspective on the essential conditions for taking a comprehensive school health approach. BMC Public Health. 2020;20:1907. doi: 10.1186/s12889-020-09987-6.
    1. Flaspohler P., Duffy J., Wandersman A., Stillman L., Maras M.A. Unpacking prevention capacity: an intersection of research-to-practice models and community-centered models. Am. J. Community Psychol. 2008;41:182–196. doi: 10.1007/s10464-008-9162-3.
    1. Leeman J., Calancie L., Hartman M.A., Escoffery C.T., Herrmann A.K., Tague L.E., Moore A.A., Wilson K.M., Schreiner M., Samuel-Hodge C. What strategies are used to build practitioners’ capacity to implement community-based interventions and are they effective? A systematic review. Implement. Sci. 2015;10:80. doi: 10.1186/s13012-015-0272-7.
    1. Johnson S.M. Where Teachers Thrive: Organizing Schools for Success. Harvard Education Press; Cambridge, MA, USA: 2019.
    1. Jones M., Defever E., Letsinger A., Steele J., Mackintosh K.A. A mixed-studies systematic review and meta-analysis of school-based interventions to promote physical activity and/or reduce sedentary time in children. J. Sport Health Sci. 2020;9:3–17. doi: 10.1016/j.jshs.2019.06.009.
    1. Hartwig T.B., Sanders T., Vasconcellos D., Noetel M., Parker P.D., Lubans D.R., Andrade S., Avila-Garcia M., Bartholomew J., Belton S. School-based interventions modestly increase physical activity and cardiorespiratory fitness but are least effective for youth who need them most: an individual participant pooled analysis of 20 controlled trials. Br. J. Sports Med. 2021 doi: 10.1136/bjsports-2020-102740.
    1. Kriemler S., Meyer U., Martin E., van Sluijs E.M.F., Andersen L.B., Martin B.W. Effect of school-based interventions on physical activity and fitness in children and adolescents: a review of reviews and systematic update. Br. J. Sports Med. 2011;45:923–930. doi: 10.1136/bjsports-2011-090186.
    1. Armstrong N., Welsman J.O. Traditional and New Perspectives on Youth Cardiorespiratory Fitness. Med. Sci. Sports Exerc. 2020;52:2563–2573. doi: 10.1249/MSS.0000000000002418.
    1. Blair S.N., Kohl H.W., 3rd, Barlow C.E., Paffenbarger R.S., Jr., Gibbons L.W., Macera C.A. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA. 1995;273:1093–1098. doi: 10.1001/jama.1995.03520380029031.
    1. McCrabb S., Lane C., Hall A., Milat A., Bauman A., Sutherland R., Yoong S., Wolfenden L. Scaling-up evidence-based obesity interventions: A systematic review assessing intervention adaptations and effectiveness and quantifying the scale-up penalty. Obes. Rev. 2019;20:964–982. doi: 10.1111/obr.12845.
    1. Welsh B.C., Sullivan C.J., Olds D.L. When early crime prevention goes to scale: a new look at the evidence. Prev. Sci. 2010;11:115–125. doi: 10.1007/s11121-009-0159-4.
    1. Tommeraas T., Ogden T. Is There a Scale-up Penalty? Testing Behavioral Change in the Scaling up of Parent Management Training in Norway. Adm. Policy Ment. Health. 2017;44:203–216. doi: 10.1007/s10488-015-0712-3.
    1. Kilbourne A.M., Neumann M.S., Pincus H.A., Bauer M.S., Stall R. Implementing evidence-based interventions in health care: application of the replicating effective programs framework. Implement. Sci. 2007;2:42. doi: 10.1186/1748-5908-2-42.
    1. Bopp M., Saunders R.P., Lattimore D. The tug-of-war: fidelity versus adaptation throughout the health promotion program life cycle. J. Prim. Prev. 2013;34:193–207. doi: 10.1007/s10935-013-0299-y.
    1. Yamey G. Scaling up global health interventions: a proposed framework for success. PLoS Med. 2011;8:e1001049. doi: 10.1371/journal.pmed.1001049.
    1. CATCH Global Foundation How does CATCH work? [(accessed on 22 February 2021)];2021 Available online:
    1. Kibbe D.L., Hackett J., Hurley M., McFarland A., Schubert K.G., Schultz A., Harris S. Ten Years of TAKE 10!((R)): Integrating physical activity with academic concepts in elementary school classrooms. Prev. Med. 2011;52 Suppl 1:S43–S50. doi: 10.1016/j.ypmed.2011.01.025.
    1. Wears R.L. Advanced Statistics: Statistical Methods for Analyzing Cluster and Cluster-randomized Data. Acad. Emerg. Med. 2002;9:330–341. doi: 10.1197/aemj.9.4.330.
    1. Williams R.L. A note on robust variance estimation for cluster correlated data. Biometrics. 2000;56:645–646. doi: 10.1111/j.0006-341X.2000.00645.x.

Source: PubMed

3
Subscribe