Effects of insulin glargine versus metformin on glycemic variability, microvascular and beta-cell function in early type 2 diabetes

F Pistrosch, C Köhler, F Schaper, W Landgraf, T Forst, M Hanefeld, F Pistrosch, C Köhler, F Schaper, W Landgraf, T Forst, M Hanefeld

Abstract

We investigated whether basal insulin as first-line treatment in recently diagnosed type 2 diabetes (T2D) can improve glucose control, microvascular function and preserve insulin secretion in comparison with metformin (MET). In this open-label, randomized, prospective 36-week study, 75 patients (44 m, 31 f, mean age 60.7 ± 9.2 year) were allocated to treatment with either MET 1,000 mg b.i.d. (n = 36) or insulin glargine (GLA) at bedtime (n = 39). At baseline and study end, we performed a continuous glucose monitoring for assessment of interstitial glucose (IG) and measured microvascular function using Laser-Doppler fluxmetry. GLA versus MET treatment resulted in a more pronounced reduction in FPG (Δ: 3.1 ± 2.5 vs. 1.4 ± 1.5 mmol/l; p < 0.001) and overall IG (Δ AUC. 671 ± 507 vs. 416 ± 537 mmol/l min; p = 0.04). Postprandial PG and IG differences after a standardized test meal did not reach significance. Proinsulin/C-peptide and HOMA B as marker of endogenous insulin secretion were significantly more improved by GLA. Microvascular blood flow improved only in MET-treated patients. Early basal insulin treatment with GLA in T2D patients provided a better control of FPG, overall IG load and biomarker of beta-cell function compared to the standard treatment with MET. MET treatment resulted in an improvement of microvascular function. Studies of longer duration are needed to evaluate the durability of glucose control and β cell protection with early GLA treatment.

Trial registration: ClinicalTrials.gov NCT00857870.

Figures

Fig. 1
Fig. 1
Mean interstitial glucose values of the second day (including a standardized breakfast) after 36 weeks of treatment with insulin glargine or metformin
Fig. 2
Fig. 2
Time course of fasting plasma glucose concentration (a) and body weight (b). Data expressed as mean ± SD. *p < 0.01 (ANOVA for repeated measures)
Fig. 3
Fig. 3
Fasting (0 min) and postprandial (120 min) beta-cell function assessed by proinsulin/C-peptide at baseline and study end (week 36), #p < 0.05 vs. baseline value. Data are expressed as mean ± SEM

References

    1. Ward WK, Bolgiano DC, McKnight B, Halter JB, Porte D., Jr Diminished B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Invest. 1984;74(4):1318–1328. doi: 10.1172/JCI111542.
    1. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102–110. doi: 10.2337/diabetes.52.1.102.
    1. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia. 2003;46(1):3–19.
    1. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B. Management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the initiation and adjustment of therapy. Update regarding the thiazolidinediones. Diabetologia. 2008;51(1):8–11. doi: 10.1007/s00125-007-0873-z.
    1. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O’Neill MC, Zinman B, Viberti G. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355(23):2427–2443. doi: 10.1056/NEJMoa066224.
    1. UK Prospective Diabetes Study (UKPDS) Group Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–865. doi: 10.1016/S0140-6736(98)07037-8.
    1. Brunzell JD, Robertson RP, Lerner RL, Hazzard WR, Ensinck JW, Bierman EL, Porte D., Jr Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests. J Clin Endocrinol Metab. 1976;42(2):222–229. doi: 10.1210/jcem-42-2-222.
    1. Pistrosch F, Schaper F, Passauer J, Koehler C, Bornstein SR, Hanefeld M. Effects of the alpha glucosidase inhibitor acarbose on endothelial function after a mixed meal in newly diagnosed type 2 diabetes. Horm Metab Res. 2009;41(2):104–108. doi: 10.1055/s-0028-1103276.
    1. Ilkova H, Glaser B, Tunckale A, Bagriacik N, Cerasi E. Induction of long-term glycemic control in newly diagnosed type 2 diabetic patients by transient intensive insulin treatment. Diabetes Care. 1997;20(9):1353–1356. doi: 10.2337/diacare.20.9.1353.
    1. Weng J, Li Y, Xu W, Shi L, Zhang Q, Zhu D, Hu Y, Zhou Z, Yan X, Tian H, Ran X, Luo Z, Xian J, Yan L, Li F, Zeng L, Chen Y, Yang L, Yan S, Liu J, Li M, Fu Z, Cheng H. Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial. Lancet. 2008;371(9626):1753–1760. doi: 10.1016/S0140-6736(08)60762-X.
    1. The ORIGIN Trial Investigators (2012) Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 367(4):319–328
    1. Baxter MA. The role of new basal insulin analogues in the initiation and optimisation of insulin therapy in type 2 diabetes. Acta Diabetol. 2008;45(4):253–268. doi: 10.1007/s00592-008-0052-9.
    1. Papa G, Baratta R, Cali V, Degano C, Iurato MP, Licciardello C, Maiorana R, Finocchiaro C. Factors that influence basal insulin requirement in type 2 diabetes. Acta Diabetol. 2012;49(5):387–393. doi: 10.1007/s00592-012-0372-7.
    1. Avogaro A, Schernthaner G (2012) Achieving glycemic control in patients with type 2 diabetes and renal impairment. Acta Diabetol. doi:10.1007/s00592-012-0442-x
    1. Riddle MC, Rosenstock J, Gerich J. The treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care. 2003;26(11):3080–3086. doi: 10.2337/diacare.26.11.3080.
    1. Stirban A, Nandrean S, Gotting C, Tamler R, Pop A, Negrean M, Gawlowski T, Stratmann B, Tschoepe D. Effects of n-3 fatty acids on macro- and microvascular function in subjects with type 2 diabetes mellitus. Am J Clin Nutr. 2010;91(3):808–813. doi: 10.3945/ajcn.2009.28374.
    1. Cusi K, Cunningham GR, Comstock JP. Safety and efficacy of normalizing fasting glucose with bedtime NPH insulin alone in NIDDM. Diabetes Care. 1995;18(6):843–851. doi: 10.2337/diacare.18.6.843.
    1. Pennartz C, Schenker N, Menge BA, Schmidt WE, Nauck MA, Meier JJ. Chronic reduction of fasting glycemia with insulin glargine improves first- and second-phase insulin secretion in patients with type 2 diabetes. Diabetes Care. 2011;34(9):2048–2053. doi: 10.2337/dc11-0471.
    1. Alvarsson M, Sundkvist G, Lager I, Henricsson M, Berntorp K, Fernqvist-Forbes E, Steen L, Westermark G, Westermark P, Orn T, Grill V. Beneficial effects of insulin versus sulphonylurea on insulin secretion and metabolic control in recently diagnosed type 2 diabetic patients. Diabetes Care. 2003;26(8):2231–2237. doi: 10.2337/diacare.26.8.2231.
    1. Wajchenberg BL. Beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev. 2007;28(2):187–218. doi: 10.1210/10.1210/er.2006-0038.
    1. Laedtke T, Kjems L, Porksen N, Schmitz O, Veldhuis J, Kao PC, Butler PC. Overnight inhibition of insulin secretion restores pulsatility and proinsulin/insulin ratio in type 2 diabetes. Am J Physiol Endocrinol Metab. 2000;279(3):E520–E528.
    1. Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004;24(5):816–823. doi: 10.1161/01.ATV.0000122852.22604.78.
    1. Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest. 2006;116(7):1802–1812. doi: 10.1172/JCI29103.
    1. van Haeften TW, Twickler TB. Insulin-like growth factors and pancreas beta cells. Eur J Clin Invest. 2004;34(4):249–255. doi: 10.1111/j.1365-2362.2004.01337.x.
    1. Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev. 2007;28(5):463–491. doi: 10.1210/er.2007-0006.
    1. Forst T, Hohberg C, Pfutzner A. Cardiovascular effects of disturbed insulin activity in metabolic syndrome and in type 2 diabetic patients. Horm Metab Res. 2009;41(2):123–131. doi: 10.1055/s-0028-1119378.
    1. Binggeli C, Spieker LE, Corti R, Sudano I, Stojanovic V, Hayoz D, Luscher TF, Noll G. Statins enhance postischemic hyperemia in the skin circulation of hypercholesterolemic patients: a monitoring test of endothelial dysfunction for clinical practice? J Am Coll Cardiol. 2003;42(1):71–77. doi: 10.1016/S0735-1097(03)00505-9.
    1. Hansell J, Henareh L, Agewall S, Norman M. Non-invasive assessment of endothelial function—relation between vasodilatory responses in skin microcirculation and brachial artery. Clin Physiol Funct Imaging. 2004;24(6):317–322. doi: 10.1111/j.1475-097X.2004.00575.x.
    1. Pistrosch F, Passauer J, Fischer S, Fuecker K, Hanefeld M, Gross P. In type 2 diabetes, rosiglitazone therapy for insulin resistance ameliorates endothelial dysfunction independent of glucose control. Diabetes Care. 2004;27(2):484–490. doi: 10.2337/diacare.27.2.484.
    1. Yki-Jarvinen H, Utriainen T. Insulin-induced vasodilatation: physiology or pharmacology? Diabetologia. 1998;41(4):369–379. doi: 10.1007/s001250050919.
    1. Agarwal N, Rice SP, Bolusani H, Luzio SD, Dunseath G, Ludgate M, Rees DA. Metformin reduces arterial stiffness and improves endothelial function in young women with polycystic ovary syndrome: a randomized, placebo-controlled, crossover trial. J Clin Endocrinol Metab. 2010;95(2):722–730. doi: 10.1210/jc.2009-1985.
    1. Fidan E, Onder EH, Yilmaz M, Yilmaz H, Kocak M, Karahan C, Erem C. The effects of rosiglitazone and metformin on inflammation and endothelial dysfunction in patients with type 2 diabetes mellitus. Acta Diabetol. 2011;48(4):297–302. doi: 10.1007/s00592-011-0276-y.
    1. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681–1687. doi: 10.1001/jama.295.14.1681.
    1. Wang J, Alexanian A, Ying R, Kizhakekuttu TJ, Dharmashankar K, Vasquez-Vivar J, Gutterman DD, Widlansky ME. Acute exposure to low glucose rapidly induces endothelial dysfunction and mitochondrial oxidative stress: role for AMP kinase. Arterioscler Thromb Vasc Biol. 2012;32(3):712–720. doi: 10.1161/ATVBAHA.111.227389.
    1. Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy MA, Simonson DC, Creager MA. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation. 1998;97(17):1695–1701. doi: 10.1161/01.CIR.97.17.1695.
    1. Hanefeld M, Koehler C, Hoffmann C, Wilhelm K, Kamke W, Gerstein H. Effect of targeting normal fasting glucose levels with basal insulin glargine on glycaemic variability and risk of hypoglycaemia: a randomized, controlled study in patients with early type 2 diabetes. Diabet Med. 2010;27(2):175–180. doi: 10.1111/j.1464-5491.2009.02915.x.
    1. Marbury TC, Schwartz S, Rosenberg MA, Jariwala N, Becker RH, Johnston PS. A pilot study to examine the feasibility of insulin glargine in subjects with impaired fasting glucose, impaired glucose tolerance or new-onset type 2 diabetes. Exp Clin Endocrinol Diabetes. 2008;116(5):282–288. doi: 10.1055/s-2007-1022521.

Source: PubMed

3
Subscribe