Multifunctional Flexible Sensor Based on Laser-Induced Graphene

Tao Han, Anindya Nag, Roy B V B Simorangkir, Nasrin Afsarimanesh, Hangrui Liu, Subhas Chandra Mukhopadhyay, Yongzhao Xu, Maxim Zhadobov, Ronan Sauleau, Tao Han, Anindya Nag, Roy B V B Simorangkir, Nasrin Afsarimanesh, Hangrui Liu, Subhas Chandra Mukhopadhyay, Yongzhao Xu, Maxim Zhadobov, Ronan Sauleau

Abstract

The paper presents the design and fabrication of a low-cost and easy-to-fabricate laser-induced graphene sensor together with its implementation for multi-sensing applications. Laser-irradiation of commercial polymer film was applied for photo-thermal generation of graphene. The graphene patterned in an interdigitated shape was transferred onto Kapton sticky tape to form the electrodes of a capacitive sensor. The functionality of the sensor was validated by employing them in electrochemical and strain-sensing scenarios. Impedance spectroscopy was applied to investigate the response of the sensor. For the electrochemical sensing, different concentrations of sodium sulfate were prepared, and the fabricated sensor was used to detect the concentration differences. For the strain sensing, the sensor was deployed for monitoring of human joint movements and tactile sensing. The promising sensing results validating the applicability of the fabricated sensor for multiple sensing purposes are presented.

Keywords: capacitive sensors; electrochemical sensing; flexible sensors; interdigital; laser-induced graphene; strain sensing; wearable sensors.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic diagram illustrating the fabrication process of the laser-induced graphene sensor.
Figure 2
Figure 2
Morphology of the fabricated graphene sensor taken under SEM.
Figure 3
Figure 3
SEM images of the graphene morphology: (a) before tests, (b) after repetitive electrochemical sensing tests, and (c) after repetitive mechanical sensing tests. During the electrochemical test, the sensor was immersed in five samples with different concentrations and the process was repeated three times. During the mechanical test, repetitive bending-releasing movements were applied to the sensor for 25 min. The details are given in Section 4.
Figure 4
Figure 4
(a) Fabricated sensor with detailed design (all dimensions are in millimeters). (b) The bending view showing the flexibility of the sensor.
Figure 5
Figure 5
Illustration of the electrodynamics of a capacitive sensor.
Figure 6
Figure 6
Illustration of the induced strain affecting the overall dimensions of the sensor.
Figure 7
Figure 7
Experimental setup for testing of sulfate samples at different concentrations.
Figure 8
Figure 8
Impedance response of the sensor for different concentrations of sulfate.
Figure 9
Figure 9
Sensitivity of the graphene sensor towards the sulfate concentrations at (a) 28 and (b) 3500 Hz.
Figure 10
Figure 10
The repetitive electrochemical response of the sensor at (a) 28 and (b) 3500 Hz.
Figure 11
Figure 11
Response of the sensor for different bending radii of curvature.
Figure 12
Figure 12
Change in sensor impedance with respect to different strain values applied in the direction illustrated in the inset. The impedance change (|ΔZ|) is shown relative to the impedance when no strain induced (|Z0|).
Figure 13
Figure 13
Implementation of the sensor for real-time strain sensing. The sensor was attached to the (a) finger and (b) elbow joints of a 36-year-old volunteer for repetitive movements monitoring. (c) The sensor was attached to a ball for tactile sensing scenario.
Figure 14
Figure 14
Responses of the sensor with respect to (a) repetitive movements of finger joint, (b) repetitive movements of elbow joint, and (c) repetitive gently touches of index finger.
Figure 15
Figure 15
(a) Illustration of manual bending for investigating long-term response of the sensor (left: flat, right: bent). (b) Response of the sensor towards consecutive oscillatory bending for a duration of 1500 s. The inset of the figure shows the two separate time frames considered to validate the consistency in their responses.

References

    1. Windmiller J.R., Wang J. Wearable electrochemical sensors and biosensors: A review. Electroanalysis. 2012;25:29–46. doi: 10.1002/elan.201200349.
    1. Zhao J., Zhang G.-Y., Shyi D.-X. Review of graphene-based strain sensors. Chin. Phys. B. 2013;2013:057701. doi: 10.1088/1674-1056/22/5/057701.
    1. Nag A., Mukhopadhyay S.C., Kosel J. Wearable flexible sensors: A review. IEEE Sens. J. 2017;17:3949–3960. doi: 10.1109/JSEN.2017.2705700.
    1. Nag A., Mitra A., Mukhopadhyay S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A. 2018;270:177–194. doi: 10.1016/j.sna.2017.12.028.
    1. Mannsfeld S.C.B., Tee B.C.K., Stoltenberg R.M., Chen C.V.H.H., Barman S., Muir B.V.O., Sokolov A.N., Reese C., Bao Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010;9:859–864. doi: 10.1038/nmat2834.
    1. Amjadi M., Pichitpajongkit A., Lee S., Ryu S., Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano. 2014;8:5154–5163. doi: 10.1021/nn501204t.
    1. Zhao X., Hua Q., Yu R., Zhang Y., Pan C. Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Adv. Electron. Mater. 2015;1:1500142. doi: 10.1002/aelm.201500142.
    1. Choi D.Y., Kim M.H., Oh Y.S., Jung S.H., Jung J.H., Sung H.J., Lee H.W., Lee H.M. Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring. ACS Appl. Mater. Interfaces. 2017;9:1770–1780. doi: 10.1021/acsami.6b12415.
    1. Nag A., Simorangkir R.B.V.B., Valentin E., Bjorninen T., Ukkonen L., Hashmi R.M., Mukhopadhyay S.C. A transparent strain sensor based on PDMS-embedded conductive fabric for wearable sensing applications. IEEE Access. 2018;6:71020–71027. doi: 10.1109/ACCESS.2018.2881463.
    1. Oh S.Y., Hong S.Y., Jeong Y.R., Yun J., Park H., Jin S.W., Lee G., Oh J.H., Lee H., Lee S.S., et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl. Mater. Interfaces. 2018;10:13729–13740. doi: 10.1021/acsami.8b03342.
    1. Li K., Wei H., Liu W., Meng H., Zhang P., Yan C. 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing. Nanotechnology. 2018;29:185501. doi: 10.1088/1361-6528/aaafa5.
    1. Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. doi: 10.1038/nmat1849.
    1. Hou C., Wang H., Zhang Q., Li Y., Zhu M. Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv. Mater. 2014;26:5018–5024. doi: 10.1002/adma.201401367.
    1. Jeong Y., Park H., Jin S., Hong S., Lee S., Ha J. Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 2015;25:4228–4236. doi: 10.1002/adfm.201501000.
    1. Qin Y., Peng Q., Ding Y., Lin Z., Wang C., Li Y., Xu F., Li J., Yuan Y., He X., et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano. 2015;9:8933–8941. doi: 10.1021/acsnano.5b02781.
    1. Xiang L., Wang Z., Liu Z., Weigum S.E., Yu Q., Chen M.Y. Inkjet-printed flexible biosensor based on graphene field effect transistor. IEEE Sens. J. 2016;16:8359–8364. doi: 10.1109/JSEN.2016.2608719.
    1. Singh E., Meyyappan M., Nalwa H.S. Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces. 2017;9:34544–34586. doi: 10.1021/acsami.7b07063.
    1. Huang L., Zhang Z., Li Z., Chen B., Ma X., Dong L., Peng L.M. Multifunctional graphene sensors for magnetic and hydrogen detection. ACS Appl. Mater. Interfaces. 2015;7:9581–9588. doi: 10.1021/acsami.5b01070.
    1. Fonsaca J.E.S., Hostert L., Ortha E.S., Zarbin A.J.G. Tailoring multifunctional graphene-based thin films: From nanocatalysts to SERS substrates. J. Mater. Chem. C. 2017;5:9591–9603. doi: 10.1039/C7TA01967J.
    1. Xu H., Lu Y.F., Xiang J.X., Zhang M.K., Zhao Y.J., Xiea Z.Y., Gu Z.Z. A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat. Nanoscale. 2018;10:2090–2098. doi: 10.1039/C7NR07225B.
    1. Park H., Kim J.W., Hong S.Y., Lee G., Kim D.S., Oh J.H., Jin S.W., Jeong Y.R., Oh S.Y., Yun J.Y., et al. Microporous polypyrrole-coated graphene foam for high-performance multifunctional sensors and flexible supercapacitors. Adv. Funct. Mater. 2018;28:1707013. doi: 10.1002/adfm.201707013.
    1. Lee J., Lee C.J., Kang J., Park H., Kim J., Choi M., Park H. Multifunctional graphene sensor for detection of environment signals using a decoupling technique. Solid-State Electron. 2019;151:40–46. doi: 10.1016/j.sse.2018.10.014.
    1. Whitener K.E., Jr., Sheehan P.E. Graphene synthesis. Diam. Relat. Mater. 2014;2014:25–34. doi: 10.1016/j.diamond.2014.04.006.
    1. Brownson D.A., Banks C.E. The electrochemistry of CVD graphene: Progress and prospects. Phys. Chem. Chem. Phys. 2012;14:8264–8281. doi: 10.1039/c2cp40225d.
    1. Warner J.H., Schaeffel F., Bachmatiuk A., Rummeli M.H. Graphene. 1st ed. Elsevier; Amsterdam, The Netherlands: 2012. Methods for Obtaining Graphene; pp. 129–228. Chapter 4.
    1. Fink J. High Performance Polymers. 2nd ed. William Andrew; Orange, CT, USA: 2014.
    1. Lin J., Peng Z., Liu Y., R-Zepeda F., Ye R., Samuel E.L.G., Yacaman M.J., Yakobson B.I., Tour J.M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014;5:5714. doi: 10.1038/ncomms6714.
    1. Jiao L., Chua Z.Y., Moon S.K., Song J., Bi G., Zheng H., Lee B., Koo J. Laser-induced graphene on additive manufacturing parts. Nanomaterials. 2019;9:90. doi: 10.3390/nano9010090.
    1. Tao L.Q., Tian H., Liu Y., Ju Z.Y., Pang Y., Chen Y.Q., Wang D.Y., Tian X.G., Yan J.C., Deng N.Q., et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 2017;8:14579. doi: 10.1038/ncomms14579.
    1. Wang F., Wang K., Dong X., Mei X., Zhai Z., Zheng B., Lv J., Duan W., Wang W. Formation of hierarchical porous graphene films with defects using a nanosecond laser on polyimide sheet. App. Surf. Sci. 2017;419:893–900. doi: 10.1016/j.apsusc.2017.05.084.
    1. Vanegas D.C., Patino L., Mendez C., de Oliveira D.A., Torres A.M., Gomes C.L., McLamore E.S. Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors. 2018;8:42. doi: 10.3390/bios8020042.
    1. Stanford M.G., Yang K., Chyan Y., Kittrell C., Tour J.M. Laser-induced graphene for flexible and embeddable gas sensors. ACS Nano. 2019;13:3474–3482. doi: 10.1021/acsnano.8b09622.
    1. Le T.D., Park S., An J., Lee P.S., Kim Y. Ultrafast laser pulses enable one-step graphene patterning on woods and leaves for green electronics. Adv. Funct. Mater. 2019:1902771. doi: 10.1002/adfm.201902771.
    1. Wen F., Hao C., Xiang J., Wang L., Hou H., Su Z., Hu W., Liu Z. Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter. Carbon. 2014;75:236–243. doi: 10.1016/j.carbon.2014.03.058.
    1. Lamberti A., Clerici F., Fontana M., Scaltrito L. A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater. 2016;6:1600050. doi: 10.1002/aenm.201600050.
    1. Ballin C. Ph.D. Thesis. Politecnico di Torino; Turin, Italy: 2018. Laser-Induced Graphene as Electrode for Wearable Electronic Devices.
    1. Dosi M., Lau I., Zhuang Y., Simakov D.S.A., Fowler M.W., Pope M.A. Ultrasensitive electrochemical methane sensors based on solid polymer electrolyte-infused laser-induced graphene. ACS Appl. Mater. Interfaces. 2019;11:6166–6173. doi: 10.1021/acsami.8b22310.
    1. Peng Z., Lin J., Ye R., Samuel E.L.G., Tour J.M. Flexible and stackable laser-induced graphene supercapacitors. ACS Appl. Mater. Interfaces. 2015;7:3414–3419. doi: 10.1021/am509065d.
    1. Li L., Zhang J., Peng Z., Li Y., Gao C., Ji Y., Ye R., Kim N.D., Zhong Q., Yang Y., et al. High-performance pseudocapacitive micro supercapacitors from laser-induced graphene. Adv. Mater. 2015;28:838–845. doi: 10.1002/adma.201503333.
    1. Peng Z., Ye R., Mann J.A., Zakhidov D., Li Y., Smalley P.R., Lin J., Tour J.M. Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano. 2015;9:5868–5875. doi: 10.1021/acsnano.5b00436.
    1. In J.B., Hsia B., Yoo J.H., Hyun S., Carraro C., Maboudian R., Grigoropoulos C.P. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon. 2015;83:144–151. doi: 10.1016/j.carbon.2014.11.017.
    1. Clerici F., Fontana M., Bianco S., Serrapede M., Perrucci F., Ferrero S., Tresso E., Lamberti A. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces. 2016;8:10459–10465. doi: 10.1021/acsami.6b00808.
    1. Little D.N., Nair S. Recommended Practice for Stabilization of Subgrade Soils and Base Materials. National Cooperative Highway Research Program, Transportation Research Board of the National Academies; Washington, DC, USA: 2009. Technical Report.
    1. Mukhopadhyay S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2015;15:1321–1330. doi: 10.1109/JSEN.2014.2370945.
    1. Rahman M.S.A., Mukhopadhyay S.C., Yu P.L. Novel Sensors for Food Inspection: Modelling, Fabrication and Experimentation. Springer International Publishing; Basel, Switzerland: 2014. Novel Planar Interdigital Sensors; pp. 11–13. Chapter 2.
    1. Hu X., Yang W. Planar capacitive sensors–Designs and applications. Sens. Rev. 2010;30:24–39. doi: 10.1108/02602281011010772.
    1. Timmer B., Sparreboom W., Olthuis W., Bergveld P., van den Berg A. Optimization of an electrolyte conductivity detector for measuring low ion concentrations. Lab Chip. 2002;2:121–124. doi: 10.1039/b201225a.
    1. Chen Z., Ming T., Goulamaly M.M., Yao H., Nezich D., Hempel M., Hofmann M., Kong J. Enhancing the sensitivity of percolative graphene films for flexible and transparent pressure sensor arrays. Adv. Funct. Mater. 2016;26:5061–5067. doi: 10.1002/adfm.201503674.
    1. Afsarimanesh N., Mukhopadhyay S.C., Kruger M. Molecularly imprinted polymer-based electrochemical biosensor for bone loss detection. IEEE Trans. Biomed. Eng. 2018;65:1264–1271. doi: 10.1109/TBME.2017.2744667.
    1. Alahi M.E.E., Mukhopadhyay S.C., Burkitt L. Imprinted polymer coated impedimetric nitrate sensor for real-time water quality monitoring. Sens. Actuators B. 2018;259:753–761. doi: 10.1016/j.snb.2017.12.104.

Source: PubMed

3
Subscribe