Mycobiome in the Gut: A Multiperspective Review

Voon Kin Chin, Voon Chen Yong, Pei Pei Chong, Syafinaz Amin Nordin, Rusliza Basir, Maha Abdullah, Voon Kin Chin, Voon Chen Yong, Pei Pei Chong, Syafinaz Amin Nordin, Rusliza Basir, Maha Abdullah

Abstract

Human gut is home to a diverse and complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi, and other microorganisms that have an undisputable role in maintaining good health for the host. Studies on the interplay between microbiota in the gut and various human diseases remain the key focus among many researchers. Nevertheless, advances in sequencing technologies and computational biology have helped us to identify a diversity of fungal community that reside in the gut known as the mycobiome. Although studies on gut mycobiome are still in its infancy, numerous sources have reported its potential role in host homeostasis and disease development. Nonetheless, the actual mechanism of its involvement remains largely unknown and underexplored. Thus, in this review, we attempt to discuss the recent advances in gut mycobiome research from multiple perspectives. This includes understanding the composition of fungal communities in the gut and the involvement of gut mycobiome in host immunity and gut-brain axis. Further, we also discuss on multibiome interactions in the gut with emphasis on fungi-bacteria interaction and the influence of diet in shaping gut mycobiome composition. This review also highlights the relation between fungal metabolites and gut mycobiota in human homeostasis and the role of gut mycobiome in various human diseases. This multiperspective review on gut mycobiome could perhaps shed new light for future studies in the mycobiome research area.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2020 Voon Kin Chin et al.

Figures

Figure 1
Figure 1
The interactions between gut mycobiome and host in various areas.

References

    1. Qin J., Consortium M. H. I. T., Li R., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi: 10.1038/nature08821.
    1. Peterson J., Garges S., Giovanni M., et al. The NIH human microbiome project. Genome Research. 2009;19(12):2317–2323. doi: 10.1101/gr.096651.109.
    1. Sogin M. L., Morrison H. G., Huber J. A., et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(32):12115–12120. doi: 10.1073/pnas.0605127103.
    1. Cui L., Morris A., Ghedin E. The human mycobiome in health and disease. Genome Medicine. 2013;5(7):p. 63. doi: 10.1186/gm467.
    1. Savage D. C. Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology. 1977;31(1):107–133. doi: 10.1146/annurev.mi.31.100177.000543.
    1. Kennedy M. J. Regulation of candida albicans populations in the gastrointestinal tract: mechanisms and significance in GI and systemic candidiasis. In: McGinnis M. R., Borgers M., editors. Current topics in medical mycology. New York, NY, USA: Springer; 1989. pp. 315–402.
    1. Underhill D. M., Iliev I. D. The mycobiota: interactions between commensal fungi and the host immune system. Nature Reviews Immunology. 2014;14(6):405–416. doi: 10.1038/nri3684.
    1. Huseyin C. E., O’toole P. W., Cotter P. D., Scanlan P. D. Forgotten fungi—the gut mycobiome in human health and disease. Microbiological Reviews. 2017;41(4):479–511. doi: 10.1093/femsre/fuw047.
    1. Sokol H., Leducq V., Aschard H., et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66(6):1039–1048. doi: 10.1136/gutjnl-2015-310746.
    1. Iliev I. D., Funari V. A., Taylor K. D., et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336(6086):1314–1317. doi: 10.1126/science.1221789.
    1. Chen Y., Chen Z., Guo R., et al. Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagnostic Microbiology and Infectious Disease. 2011;70(4):492–498. doi: 10.1016/j.diagmicrobio.2010.04.005.
    1. Miceli M. H., Díaz J. A., Lee S. A. Emerging opportunistic yeast infections. The Lancet Infectious Diseases. 2011;11(2):142–151. doi: 10.1016/S1473-3099(10)70218-8.
    1. Polvi E. J., Li X., O’Meara T. R., Leach M. D., Cowen L. E. Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies. Cellular and Molecular Life Sciences. 2015;72(12):2261–2287. doi: 10.1007/s00018-015-1860-z.
    1. Arumugam M., Raes J., Pelletier E., et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. doi: 10.1038/nature09944.
    1. Hallen-Adams H. E., Suhr M. J. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8(3):352–358. doi: 10.1080/21505594.2016.1247140.
    1. Nash A. K., Auchtung T. A., Wong M. C., et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017;5(1):p. 153. doi: 10.1186/s40168-017-0373-4.
    1. Mogilnicka I., Ufnal M. Gut mycobiota and fungal metabolites in human homeostasis. Current Drug Targets. 2018;20(2):232–240. doi: 10.2174/1389450119666180724125020.
    1. Hibbett D. S., Binder M., Bischoff J. F., et al. A higher-level phylogenetic classification of the fungi. Mycological Research. 2007;111(5):509–547. doi: 10.1016/j.mycres.2007.03.004.
    1. Hoffmann C., Dollive S., Grunberg S., et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One. 2013;8(6, article e66019) doi: 10.1371/journal.pone.0066019.
    1. Sam Q., Chang M., Chai L. The fungal mycobiome and its interaction with gut bacteria in the host. International Journal of Molecular Sciences. 2017;18(2):p. 330. doi: 10.3390/ijms18020330.
    1. Hallen-Adams H. E., Kachman S. D., Kim J., Legge R. M., Martínez I. Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecology. 2015;15:9–17. doi: 10.1016/j.funeco.2015.01.006.
    1. Hamad I., Ranque S., Azhar E. I., et al. Culturomics and amplicon-based metagenomic approaches for the study of fungal population in human gut microbiota. Scientific Reports. 2017;7(1):16788–16788. doi: 10.1038/s41598-017-17132-4.
    1. Hamad I., Raoult D., Bittar F. Repertory of eukaryotes (eukaryome) in the human gastrointestinal tract: taxonomy and detection methods. Parasite Immunology. 2016;38(1):12–36. doi: 10.1111/pim.12284.
    1. Schloss P. D., Iverson K. D., Petrosino J. F., Schloss S. J. The dynamics of a family's gut microbiota reveal variations on a theme. Microbiome. 2014;2(1) doi: 10.1186/2049-2618-2-25.
    1. Palmer C., Bik E. M., DiGiulio D. B., Relman D. A., Brown P. O. Development of the human infant intestinal microbiota. PLoS Biology. 2007;5(7):p. e177. doi: 10.1371/journal.pbio.0050177.
    1. Bliss J. M., Basavegowda K. P., Watson W. J., Sheikh A. U., Ryan R. M. Vertical and horizontal transmission of Candida albicans in very low birth weight infants using DNA fingerprinting techniques. The Pediatric Infectious Disease Journal. 2008;27(3):231–235. doi: 10.1097/INF.0b013e31815bb69d.
    1. Mutschlechner W., Karall D., Hartmann C., et al. Mammary candidiasis: molecular-based detection of Candida species in human milk samples. European Journal of Clinical Microbiology & Infectious Diseases. 2016;35(8):1309–1313. doi: 10.1007/s10096-016-2666-0.
    1. LaTuga M. S., Ellis J. C., Cotton C. M., et al. Beyond bacteria: a study of the enteric microbial consortium in extremely low birth weight infants. PLoS One. 2011;6(12, article e27858) doi: 10.1371/journal.pone.0027858.
    1. Heisel T., Podgorski H., Staley C. M., Knights D., Sadowsky M. J., Gale C. A. Complementary amplicon-based genomic approaches for the study of fungal communities in humans. PLoS One. 2015;10(2, article e0116705) doi: 10.1371/journal.pone.0116705.
    1. Strati F., Di Paola M., Stefanini I., et al. Age and gender affect the composition of fungal population of the human gastrointestinal tract. Frontiers in Microbiology. 2016;7 doi: 10.3389/fmicb.2016.01227.
    1. Filyk H. A., Osborne L. C. The multibiome: the intestinal ecosystem's influence on immune homeostasis, health, and disease. eBioMedicine. 2016;13:46–54. doi: 10.1016/j.ebiom.2016.10.007.
    1. Clark J. D. Influence of antibiotics or certain intestinal bacteria on orally administered Candida albicans in germ-free and conventional mice. Infection and Immunity. 1971;4(6):731–737. doi: 10.1128/IAI.4.6.731-737.1971.
    1. Samonis G., Gikas A., Anaissie E. J., et al. Prospective evaluation of effects of broad-spectrum antibiotics on gastrointestinal yeast colonization of humans. Antimicrobial Agents and Chemotherapy. 1993;37(1):51–53. doi: 10.1128/AAC.37.1.51.
    1. Mason K. L., Erb Downward J. R., Mason K. D., et al. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infection and Immunity. 2012;80(10):3371–3380. doi: 10.1128/IAI.00449-12.
    1. Erb Downward J. R., Falkowski N. R., Mason K. L., Muraglia R., Huffnagle G. B. Modulation of Post-Antibiotic Bacterial Community Reassembly and Host Response by Candida albicans. Scientific Reports. 2013;3(1, article 2191) doi: 10.1038/srep02191.
    1. Qiu X., Zhang F., Yang X., et al. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis. Scientific Reports. 2015;5(1) doi: 10.1038/srep10416.
    1. Jiang T. T., Shao T. Y., Ang W. X. G., et al. Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host & Microbe. 2017;22(6):809–816.e4. doi: 10.1016/j.chom.2017.10.013.
    1. Castagliuolo I., Riegler M. F., Valenick L., LaMont J. T., Pothoulakis C. Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infection and Immunity. 1999;67(1):302–307. doi: 10.1128/IAI.67.1.302-307.1999.
    1. Buts J.-P., Dekeyser N., Stilmant C., Delem E., Smets F., Sokal E. Saccharomyces boulardii Produces in Rat Small Intestine a Novel Protein Phosphatase that Inhibits Escherichia coli Endotoxin by Dephosphorylation. Pediatric Research. 2006;60(1):24–29. doi: 10.1203/01.pdr.0000220322.31940.29.
    1. Colina A. R., Aumont F., Deslauriers N., Belhumeur P., de Repentigny L. Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase. Infection and Immunity. 1996;64(11):4514–4519. doi: 10.1128/IAI.64.11.4514-4519.1996.
    1. Png C. W., Lindén S. K., Gilshenan K. S., et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. The American Journal of Gastroenterology. 2010;105(11):2420–2428. doi: 10.1038/ajg.2010.281.
    1. Noverr M. C., Huffnagle G. B. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infection and Immunity. 2004;72(11):6206–6210. doi: 10.1128/IAI.72.11.6206-6210.2004.
    1. García C., Tebbji F., Daigneault M., et al. The human gut microbial metabolome modulates fungal growth via the TOR signaling pathway. mSphere. 2017;2(6) doi: 10.1128/mSphere.00555-17.
    1. Iliev I. D., Leonardi I. Fungal dysbiosis: immunity and interactions at mucosal barriers. Nature Reviews Immunology. 2017;17(10):635–646. doi: 10.1038/nri.2017.55.
    1. Ghannoum M. Cooperative evolutionary strategy between the bacteriome and mycobiome. MBio. 2016;7(6) doi: 10.1128/mBio.01951-16.
    1. Kalan L., Loesche M., Hodkinson B. P., et al. Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, and associated with delayed healing. MBio. 2016;7(5) doi: 10.1128/mBio.01058-16.
    1. Hoarau G., Mukherjee P. K., Gower-Rousseau C., et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. MBio. 2016;7(5) doi: 10.1128/mBio.01250-16.
    1. De Brucker K., Tan Y., Vints K., et al. Fungal β-1, 3-glucan increases ofloxacin-tolerance of Escherichia coli in a polymicrobial E. coli–Candida albicans biofilm. Antimicrobial Agents and Chemotherapy. 2015;59(6):3052–3058. doi: 10.1128/AAC.04650-14.
    1. Kong E. F., Tsui C., Kucharíková S., Andes D., Van Dijck P., Jabra-Rizk M. A. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans Biofilm matrix. MBio. 2016;7(5) doi: 10.1128/mBio.01365-16.
    1. Carabotti M., Scirocco A., Maselli M. A., Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology. 2015;28(2):203–209.
    1. Botschuijver S., Roeselers G., Levin E., et al. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology. 2017;153(4):1026–1039. doi: 10.1053/j.gastro.2017.06.004.
    1. Moyes D. L., Naglik J. R. Mucosal immunity and candida albicans infection. Clinical & Developmental Immunology. 2011;2011, article 346307:9. doi: 10.1155/2011/346307.
    1. Plantinga T. S., van der Velden W. J. F. M., Ferwerda B., et al. Early stop polymorphism in human DECTIN-1 is associated with increased Candida colonization in hematopoietic stem cell transplant recipients. Clinical Infectious Diseases. 2009;49(5):724–732. doi: 10.1086/604714.
    1. van der Velden W. J. F. M., Netea M. G., de Haan A. F. J., Huls G. A., Donnelly J. P., Blijlevens N. M. A. Role of the mycobiome in human acute graft-versus-host disease. Biology of Blood and Marrow Transplantation. 2013;19(2):329–332. doi: 10.1016/j.bbmt.2012.11.008.
    1. Sokol H., Conway K. L., Zhang M., et al. Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice. Gastroenterology. 2013;145(3):591–601.e3. doi: 10.1053/j.gastro.2013.05.047.
    1. Conti H. R., Gaffen S. L. IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans. Journal of Immunology. 2015;195(3):780–788. doi: 10.4049/jimmunol.1500909.
    1. Netea M. G., Joosten L. A. B., van der Meer J. W. M., Kullberg B.-J., van de Veerdonk F. L. Immune defence against Candida fungal infections. Nature Reviews Immunology. 2015;15(10):630–642. doi: 10.1038/nri3897.
    1. Plato A., Hardison S. E., Brown G. D. Pattern recognition receptors in antifungal immunity. Seminars in Immunopathology. 2015;37(2):97–106. doi: 10.1007/s00281-014-0462-4.
    1. Hueber W., Sands B. E., Lewitzky S., et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61(12):1693–1700. doi: 10.1136/gutjnl-2011-301668.
    1. De Luca A., Zelante T., D'Angelo C., et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunology. 2010;3(4):361–373. doi: 10.1038/mi.2010.22.
    1. Puel A., Döffinger R., Natividad A., et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. The Journal of Experimental Medicine. 2010;207(2):291–297. doi: 10.1084/jem.20091983.
    1. Gessner M. A., Werner J. L., Lilly L. M., et al. Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. Infection and Immunity. 2012;80(1):410–417. doi: 10.1128/IAI.05939-11.
    1. De Luca A., Carvalho A., Cunha C., et al. IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. PLoS Pathogens. 2013;9(7, article e1003486) doi: 10.1371/journal.ppat.1003486.
    1. Conti H. R., Bruno V. M., Childs E. E., et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host & Microbe. 2016;20(5):606–617. doi: 10.1016/j.chom.2016.10.001.
    1. Qamar A., Aboudola S., Warny M., et al. Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice. Infection and Immunity. 2001;69(4):2762–2765. doi: 10.1128/IAI.69.4.2762-2765.2001.
    1. Thomas S., Metzke D., Schmitz J., Dörffel Y., Baumgart D. C. Anti-inflammatory effects of Saccharomyces boulardii mediated by myeloid dendritic cells from patients with Crohn’s disease and ulcerative colitis. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2011;301(6):G1083–G1092. doi: 10.1152/ajpgi.00217.2011.
    1. Tang C., Kamiya T., Liu Y., et al. Inhibition of dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host & Microbe. 2015;18(2):183–197. doi: 10.1016/j.chom.2015.07.003.
    1. Lamas B., Richard M. L., Leducq V., et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nature Medicine. 2016;22(6):598–605. doi: 10.1038/nm.4102.
    1. Wang T., Fan C., Yao A., et al. The adaptor protein CARD9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. Immunity. 2018;49(3):504–514.e4. doi: 10.1016/j.immuni.2018.08.018.
    1. Rizzetto L., Ifrim D. C., Moretti S., et al. Fungal chitin induces trained immunity in human monocytes during cross-talk of the host with Saccharomyces cerevisiae. The Journal of Biological Chemistry. 2016;291(15):7961–7972. doi: 10.1074/jbc.M115.699645.
    1. Quintin J., Saeed S., Martens J. H. A., et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host & Microbe. 2012;12(2):223–232. doi: 10.1016/j.chom.2012.06.006.
    1. Dantzer R., Konsman J. P., Bluthé R. M., Kelley K. W. Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Autonomic Neuroscience. 2000;85(1-3):60–65. doi: 10.1016/S1566-0702(00)00220-4.
    1. Graff L. A., Walker J. R., Bernstein C. N. Depression and anxiety in inflammatory bowel disease: a review of comorbidity and management. Inflammatory Bowel Diseases. 2009;15(7):1105–1118. doi: 10.1002/ibd.20873.
    1. Clarke G., Quigley E. M. M., Cryan J. F., Dinan T. G. Irritable bowel syndrome: towards biomarker identification. Trends in Molecular Medicine. 2009;15(10):478–489. doi: 10.1016/j.molmed.2009.08.001.
    1. El Aidy S., Dinan T. G., Cryan J. F. Immune modulation of the brain-gut microbe axis. Frontiers in Microbiology. 2014;5 doi: 10.3389/fmicb.2014.00146.
    1. Dunn A. J. Effects of cytokines and infections on brain neurochemistry. Clinical Neuroscience Research. 2006;6(1-2):52–68. doi: 10.1016/j.cnr.2006.04.002.
    1. Czakai K., Leonhardt I., Dix A., et al. Kruppel-like Factor 4 modulates interleukin-6 release in human dendritic cells after in vitro stimulation with Aspergillus fumigatus and Candida albicans. Scientific Reports. 2016;6(1, article 27990) doi: 10.1038/srep27990.
    1. El Aidy S., Dinan T. G., Cryan J. F. Immune modulation of the brain-gut-microbe axis. Frontiers in Microbiology. 2014;5 doi: 10.3389/fmicb.2014.00146.
    1. Wheeler M. L., Limon J. J., Bar A. S., et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host & Microbe. 2016;19(6):865–873. doi: 10.1016/j.chom.2016.05.003.
    1. McAleer J. P., Nguyen N. L. H., Chen K., et al. Pulmonary Th17 antifungal immunity is regulated by the gut microbiome. Journal of Immunology. 2016;197(1):97–107. doi: 10.4049/jimmunol.1502566.
    1. Skalski J. H., Limon J. J., Sharma P., et al. Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice. PLoS Pathogens. 2018;14(9, article e1007260) doi: 10.1371/journal.ppat.1007260.
    1. Li X., Leonardi I., Semon A., et al. Response to fungal dysbiosis by gut-resident CX3CR1+ mononuclear phagocytes aggravates allergic airway disease. Cell Host & Microbe. 2018;24(6):847–856.e4. doi: 10.1016/j.chom.2018.11.003.
    1. David L. A., Maurice C. F., Carmody R. N., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. doi: 10.1038/nature12820.
    1. Lewis J. D., Chen E. Z., Baldassano R. N., et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host & Microbe. 2015;18(4):489–500. doi: 10.1016/j.chom.2015.09.008.
    1. Banani H., Marcet-Houben M., Ballester A. R., et al. Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum. BMC Genomics. 2016;17(1) doi: 10.1186/s12864-015-2347-x.
    1. Curbete M. M., Salgado H. R. N. A critical review of the properties of fusidic acid and analytical methods for its determination. Critical Reviews in Analytical Chemistry. 2016;46(4):352–360. doi: 10.1080/10408347.2015.1084225.
    1. Manzoni M., Rollini M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Applied Microbiology and Biotechnology. 2002;58(5):555–564. doi: 10.1007/s00253-002-0932-9.
    1. Shareck J., Belhumeur P. Modulation of morphogenesis in Candida albicans by various small molecules. Eukaryotic Cell. 2011;10(8):1004–1012. doi: 10.1128/EC.05030-11.
    1. Czerucka D., Dahan S., Mograbi B., Rossi B., Rampal P. Saccharomyces boulardii preserves the barrier function and modulates the signal transduction pathway induced in enteropathogenic Escherichia coli-infected T84 cells. Infection and Immunity. 2000;68(10):5998–6004. doi: 10.1128/IAI.68.10.5998-6004.2000.
    1. Sougioultzis S., Simeonidis S., Bhaskar K. R., et al. Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-κB-mediated IL-8 gene expression. Biochemical and Biophysical Research Communications. 2006;343(1):69–76. doi: 10.1016/j.bbrc.2006.02.080.
    1. Kelesidis T., Pothoulakis C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therapeutic Advances in Gastroenterology. 2012;5(2):111–125. doi: 10.1177/1756283X11428502.
    1. Buts J.-P., Keyser N. D., Raedemaeker L. D. Saccharomyces boulardii Enhances Rat Intestinal Enzyme Expression by Endoluminal Release of Polyamines. Pediatric Research. 1994;36(4):522–527. doi: 10.1203/00006450-199410000-00019.
    1. Castagliuolo I., LaMont J. T., Nikulasson S. T., Pothoulakis C. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infection and Immunity. 1996;64(12):5225–5232. doi: 10.1128/IAI.64.12.5225-5232.1996.
    1. Murzyn A., Krasowska A., Stefanowicz P., Dziadkowiec D., Łukaszewicz M. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS One. 2010;5(8, article e12050) doi: 10.1371/journal.pone.0012050.
    1. Schneider S. M., Girard-Pipau F., Filippi J., et al. Effects of Saccharomyces boulardii on fecal short-chain fatty acids and microflora in patients on long-term total enteral nutrition. World Journal of Gastroenterology. 2005;11(39):6165–6169. doi: 10.3748/wjg.v11.i39.6165.
    1. Velegraki A., Cafarchia C., Gaitanis G., Iatta R., Boekhout T. Malassezia infections in humans and animals: pathophysiology, detection, and treatment. PLoS Pathogens. 2015;11(1, article e1004523) doi: 10.1371/journal.ppat.1004523.
    1. White T. C., Findley K., Dawson T. L., et al. Fungi on the skin: dermatophytes and Malassezia. Cold Spring Harbor Perspectives in Medicine. 2014;4(8) doi: 10.1101/cshperspect.a019802.
    1. Smith M. G., Des Etages S. G., Snyder M. Microbial synergy via an ethanol-triggered pathway. Molecular and Cellular Biology. 2004;24(9):3874–3884. doi: 10.1128/MCB.24.9.3874-3884.2004.
    1. Cugini C., Calfee M. W., Farrow J. M., Morales D. K., Pesci E. C., Hogan D. A. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Molecular Microbiology. 2007;65(4):896–906. doi: 10.1111/j.1365-2958.2007.05840.x.
    1. Peleg A. Y., Hogan D. A., Mylonakis E. Medically important bacterial-fungal interactions. Nature Reviews Microbiology. 2010;8(5):340–349. doi: 10.1038/nrmicro2313.
    1. Ott S. J., Kühbacher T., Musfeldt M., et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scandinavian Journal of Gastroenterology. 2008;43(7):831–841. doi: 10.1080/00365520801935434.
    1. Li Q., Wang C., Tang C., He Q., Li N., Li J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. Journal of Clinical Gastroenterology. 2014;48(6):513–523. doi: 10.1097/MCG.0000000000000035.
    1. Liguori G., Lamas B., Richard M. L., et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients. Journal of Crohn's & Colitis. 2016;10(3):296–305. doi: 10.1093/ecco-jcc/jjv209.
    1. Lam S., Zuo T., Ho M., Chan F. K. L., Chan P. K. S., Ng S. C. Review article: Fungal alterations in inflammatory bowel diseases. Alimentary Pharmacology & Therapeutics. 2019;50(11-12):1159–1171. doi: 10.1111/apt.15523.
    1. Chong P. P., Chin V. K., Looi C. Y., Wong W. F., Madhavan P., Yong V. C. The microbiome and irritable bowel syndrome – a review on the pathophysiology, current research and future therapy. Frontiers in Microbiology. 2019;10, article 1136 doi: 10.3389/fmicb.2019.01136.
    1. Levine J., Dykoski R. K., Janoff E. N. Candida-associated diarrhea: a syndrome in search of credibility. Clinical Infectious Diseases. 1995;21(4):881–886. doi: 10.1093/clinids/21.4.881.
    1. Krause R., Reisinger E. C. Candida and antibiotic-associated diarrhoea. Clinical Microbiology and Infection. 2005;11(1):1–2. doi: 10.1111/j.1469-0691.2004.00978.x.
    1. Santelmann H., Howard J. M. Yeast metabolic products, yeast antigens and yeasts as possible triggers for irritable bowel syndrome. European Journal of Gastroenterology & Hepatology. 2005;17(1):21–26. doi: 10.1097/00042737-200501000-00005.
    1. Luan C., Xie L., Yang X., et al. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Scientific Reports. 2015;5(1, article 7980) doi: 10.1038/srep07980.
    1. Gao R., Kong C., Li H., et al. Dysbiosis signature of mycobiota in colon polyp and colorectal cancer. European Journal of Clinical Microbiology & Infectious Diseases. 2017;36(12):2457–2468. doi: 10.1007/s10096-017-3085-6.
    1. Coker O. O., Nakatsu G., Dai R. Z., et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 2019;68(4):654–662. doi: 10.1136/gutjnl-2018-317178.
    1. Chin S. F., Megat Mohd Azlan P. I. H., Mazlan L., Neoh H. M. Identification of Schizosaccharomyces pombe in the guts of healthy individuals and patients with colorectal cancer: preliminary evidence from a gut microbiome secretome study. Gut Pathogens. 2018;10(1):p. 29. doi: 10.1186/s13099-018-0258-5.
    1. Kashyap B., Bhalla P., Uppal B. Enteric pathogens in HIV/AIDS from a tertiary care hospital. Indian Journal of Community Medicine. 2009;34(3):237–242. doi: 10.4103/0970-0218.55291.
    1. Jha A. K., Uppal B., Chadha S., et al. Clinical and microbiological profile of HIV/AIDS cases with diarrhea in North India. Journal of Pathogens. 2012;2012:7. doi: 10.1155/2012/971958.971958
    1. Awoyeni A., Olaniran O., Odetoyin B., et al. Isolation and evaluation of Candida species and their association with CD4+ T cells counts in HIV patients with diarrhoea. African Health Sciences. 2017;17(2):322–329. doi: 10.4314/ahs.v17i2.5.
    1. Gouba N., Drancourt M. Digestive tract mycobiota: a source of infection. Médecine et Maladies Infectieuses. 2015;45(1-2):9–16. doi: 10.1016/j.medmal.2015.01.007.
    1. Esebelahie N. O., Enweani I. B., Omoregie R. Candida colonisation in asymptomatic HIV patients attending a tertiary hospital in Benin City, Nigeria. Libyan Journal of Medicine. 2013;8(1, article 20322) doi: 10.3402/ljm.v8i0.20322.
    1. Gouba N., Raoult D., Drancourt M. Plant and fungal diversity in gut microbiota as revealed by molecular and culture investigations. PLoS One. 2013;8(3, article e59474) doi: 10.1371/journal.pone.0059474.
    1. Mar Rodríguez M., Pérez D., Javier Chaves F., et al. Obesity changes the human gut mycobiome. Scientific Reports. 2015;5(1, article 14600) doi: 10.1038/srep14600.
    1. Paun A., Yau C., Danska J. S. The influence of the microbiome on type 1 diabetes. Journal of Immunology. 2017;198(2):590–595. doi: 10.4049/jimmunol.1601519.
    1. Han H., Li Y., Fang J., et al. Gut microbiota and type 1 diabetes. International Journal of Molecular Sciences. 2018;19(4):p. 995. doi: 10.3390/ijms19040995.
    1. Vallianou N. G., Stratigou T., Tsagarakis S. Microbiome and diabetes: where are we now? Diabetes Research and Clinical Practice. 2018;146:111–118. doi: 10.1016/j.diabres.2018.10.008.
    1. Soyucen E., Gulcan A., Aktuglu-Zeybek A. C., Onal H., Kiykim E., Aydin A. Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatrics International. 2014;56(3):336–343. doi: 10.1111/ped.12243.
    1. Gosiewski T., Salamon D., Szopa M., Sroka A., Malecki M. T., Bulanda M. Quantitative evaluation of fungi of the genus Candida in the feces of adult patients with type 1 and 2 diabetes - a pilot study. Gut Pathogens. 2014;6(1):p. 43. doi: 10.1186/s13099-014-0043-z.
    1. Kowalewska B., Zorena K., Szmigiero-Kawko M., Wąż P., Myśliwiec M. Higher diversity in fungal species discriminates children with type 1 diabetes mellitus from healthy control. Patient Preference and Adherence. 2016;10:591–599. doi: 10.2147/PPA.S97852.
    1. Jie Z., Xia H., Zhong S. L., et al. The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications. 2017;8(1):p. 845. doi: 10.1038/s41467-017-00900-1.
    1. Tang W. H. W., Kitai T., Hazen S. L. Gut microbiota in cardiovascular health and disease. Circulation Research. 2017;120(7):1183–1196. doi: 10.1161/CIRCRESAHA.117.309715.
    1. Yoshida N., Yamashita T., Hirata K. I. Gut microbiome and cardiovascular diseases. Diseases. 2018;6(3):p. 56. doi: 10.3390/diseases6030056.
    1. Chacón M. R., Lozano-Bartolomé J., Portero-Otín M., et al. The gut mycobiome composition is linked to carotid atherosclerosis. Beneficial Microbes. 2018;9(2):185–198. doi: 10.3920/BM2017.0029.
    1. Yang A. M., Inamine T., Hochrath K., et al. Intestinal fungi contribute to development of alcoholic liver disease. The Journal of Clinical Investigation. 2017;127(7):2829–2841. doi: 10.1172/JCI90562.
    1. Szabo G. Gut-liver axis beyond the microbiome: how the fungal mycobiome contributes to alcoholic liver disease. Hepatology. 2018;68(6):2426–2428. doi: 10.1002/hep.30055.
    1. Knuesel I., Chicha L., Britschgi M., et al. Maternal immune activation and abnormal brain development across CNS disorders. Nature Reviews Neurology. 2014;10(11):643–660. doi: 10.1038/nrneurol.2014.187.
    1. Labouesse M. A., Langhans W., Meyer U. Long-term pathological consequences of prenatal infection: beyond brain disorders. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2015;309(1):R1–R12. doi: 10.1152/ajpregu.00087.2015.
    1. Strati F., Cavalieri D., Albanese D., et al. Altered gut microbiota in Rett syndrome. Microbiome. 2016;4(1):p. 41. doi: 10.1186/s40168-016-0185-y.
    1. Strati F., Cavalieri D., Albanese D., et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5(1):p. 24. doi: 10.1186/s40168-017-0242-1.
    1. Severance E. G., Alaedini A., Yang S., et al. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophrenia Research. 2012;138(1):48–53. doi: 10.1016/j.schres.2012.02.025.
    1. Severance E. G., Gressitt K. L., Stallings C. R., et al. Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder. NPJ Schizophrenia. 2016;2(1, article 16018) doi: 10.1038/npjschz.2016.18.
    1. Severance E. G., Gressitt K. L., Stallings C. R., et al. Probiotic normalization of Candida albicans in schizophrenia: a randomized, placebo-controlled, longitudinal pilot study. Brain, Behavior, and Immunity. 2017;62:41–45. doi: 10.1016/j.bbi.2016.11.019.
    1. Forbes J. D., Bernstein C. N., Tremlett H., van Domselaar G., Knox N. C. A fungal world: could the gut mycobiome be involved in neurological disease? Frontiers in Microbiology. 2019;9, article 3249 doi: 10.3389/fmicb.2018.03249.
    1. Khatib R., Riederer K. M., Ramanathan J., Baran J. Faecal fungal flora in healthy volunteers and inpatients. Mycoses. 2001;44(5):151–156. doi: 10.1046/j.1439-0507.2001.00639.x.
    1. de Repentigny L., Phaneuf M., Mathieu L. G. Gastrointestinal colonization and systemic dissemination by Candida albicans and Candida tropicalis in intact and immunocompromised mice. Infection and Immunity. 1992;60(11):4907–4914. doi: 10.1128/IAI.60.11.4907-4914.1992.
    1. Ouanes A., Kouais A., Marouen S., Sahnoun M., Jemli B., Gargouri S. Contribution of the chromogenic medium CHROMagar®Candida in mycological diagnosis of yeasts. Journal de Mycologie Médicale. 2013;23(4):237–241. doi: 10.1016/j.mycmed.2013.07.058.
    1. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 1977;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463.
    1. Mardis E. R. Next-generation sequencing platforms. Annual Review of Analytical Chemistry. 2013;6(1):287–303. doi: 10.1146/annurev-anchem-062012-092628.
    1. Zoll J., Snelders E., Verweij P. E., Melchers W. J. G. Next-generation sequencing in the mycology lab. Current Fungal Infection Reports. 2016;10(2):37–42. doi: 10.1007/s12281-016-0253-6.
    1. Landlinger C., Bašková L., Preuner S., Willinger B., Buchta V., Lion T. Identification of fungal species by fragment length analysis of the internally transcribed spacer 2 region. European Journal of Clinical Microbiology & Infectious Diseases. 2009;28(6):613–622. doi: 10.1007/s10096-008-0683-3.
    1. Shokralla S., Spall J. L., Gibson J. F., Hajibabaei M. Next-generation sequencing technologies for environmental DNA research. Molecular Ecology. 2012;21(8):1794–1805. doi: 10.1111/j.1365-294X.2012.05538.x.
    1. Scanlan P. D., Marchesi J. R. Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. The ISME Journal. 2008;2(12):1183–1193. doi: 10.1038/ismej.2008.76.
    1. Tang J., Iliev I. D., Brown J., Underhill D. M., Funari V. A. Mycobiome: approaches to analysis of intestinal fungi. Journal of Immunological Methods. 2015;421:112–121. doi: 10.1016/j.jim.2015.04.004.
    1. Suhr M. J., Hallen-Adams H. E. The human gut mycobiome: pitfalls and potentials—a mycologist’s perspective. Mycologia. 2016;107(6):1057–1073. doi: 10.3852/15-147.
    1. Halwachs B., Madhusudhan N., Krause R., et al. Critical issues in mycobiota analysis. Frontiers in Microbiology. 2017;8:p. 180. doi: 10.3389/fmicb.2017.00180.
    1. Tomsíková A. Risk of fungal infection from foods, particularly in immunocompromised patients. Epidemiol Mikrobiol Imunol. 2002;51(2):78–81.
    1. Brenier-Pinchart M. P., Faure O., Garban F., et al. Ten-year surveillance of fungal contamination of food within a protected haematological unit. Mycoses. 2006;49(5):421–425. doi: 10.1111/j.1439-0507.2006.01257.x.
    1. Pitt J. I., Hocking A. D. Fungi and Food Spoilage. 3. New York: Springer; 2009.
    1. [WHO] World Health Organization. WHO estimates of the global burden of foodborne diseases. 2015, .
    1. Marroquin-Cardona A. G., Johnson N. M., Phillips T. D., Hayes A. W. Mycotoxins in a changing global environment – A review. Food and Chemical Toxicology. 2014;69:220–230. doi: 10.1016/j.fct.2014.04.025.
    1. Wunderink R. G. Surrogate markers and microbiologic end points. Clinical Infectious Diseases. 2010;51(S1):S126–S130. doi: 10.1086/653061.
    1. Lazar S. P., Lukaszewicz J. M., Persad K. A., Reinhardt J. F. Rhinocerebral Mucor circinelloides infection in immunocompromised patient following yogurt ingestion. Delaware Medical Journal. 2014;86(8):245–248.
    1. Vallabhaneni S., Walker T. A., Lockhart S. R., et al. Notes from the field: fatal gastrointestinal mucormycosis in a premature infant associated with a contaminated dietary supplement—Connecticut, 2014. MMWR. 2015;64(6):155–156.
    1. Aboltins C. A., Pratt W. A. B., Solano T. R. Fungemia secondary to gastrointestinal Mucor indicus infection. Clinical Infectious Diseases. 2006;42(1):154–155. doi: 10.1086/498751.
    1. Gurgui M., Sanchez F., March F., et al. Nosocomial outbreak of Blastoschizomyces capitatus associated with contaminated milk in a haematological unit. Journal of Hospital Infection. 2011;78(4):274–278. doi: 10.1016/j.jhin.2011.01.027.
    1. Sutherland J. C., Jones T. H. Gastric mucormycosis: report of case in a Swazi. South African Medical Journal. 1960;34:p. 161.
    1. Radosavljevic M., Koenig H.´.`., Letscher-Bru V.´., et al. Candida catenulata fungemia in a cancer patient. Journal of Clinical Microbiology. 1999;37(2):475–477. doi: 10.1128/JCM.37.2.475-477.1999.
    1. Benedict K., Chiller T. M., Mody R. K. Invasive fungal infections acquired from contaminated food or nutritional supplements: a review of the literature. Foodborne Pathogens and Disease. 2016;13(7):343–349. doi: 10.1089/fpd.2015.2108.
    1. Priyanka B., Patil R. K., Dwarakanath S. A review on detection methods used for foodborne pathogens. Indian Journal of Medical Research. 2016;144(3):327–338. doi: 10.4103/0971-5916.198677.
    1. Enaud R., Vandenborght L. E., Coron N., et al. The mycobiome: a neglected component in the microbiota-gut-brain axis. Microorganisms. 2018;6(1):p. 22. doi: 10.3390/microorganisms6010022.
    1. Brun P., Scarpa M., Marchiori C., et al. Saccharomyces boulardii CNCM I-745 supplementation reduces gastrointestinal dysfunction in an animal model of IBS. PLoS One. 2017;12(7, article e0181863) doi: 10.1371/journal.pone.0181863.
    1. Takata K., Tomita T., Okuno T., et al. Dietary yeasts reduce inflammation in central nerve system via microflora. Annals of Clinical Translational Neurology. 2015;2(1):56–66. doi: 10.1002/acn3.153.

Source: PubMed

3
Subscribe