Copper Deficiency in the Lungs of TNF-α Transgenic Mice

Liu Liu, Xiangrong Geng, Joseph McDermott, Jian Shen, Cody Corbin, Stephanie Xuan, Jae Kim, Li Zuo, Zijuan Liu, Liu Liu, Xiangrong Geng, Joseph McDermott, Jian Shen, Cody Corbin, Stephanie Xuan, Jae Kim, Li Zuo, Zijuan Liu

Abstract

Tumor necrosis factor (TNF)-α is a well-known pro-inflammatory cytokine. Increased expression of Tnf-α is a feature of inflammatory lung diseases, such as asthma, emphysema, fibrosis, and smoking-induced chronic obstructive pulmonary disease (COPD). Using a mouse line with lung-specific Tnf-α overexpression (SPC-TNF-α) to mimic TNF-α-associated lung diseases, we investigated the role of chronic inflammation in the homeostasis of lung trace elements. We performed a quantitative survey of micronutrients and biometals, including copper (Cu), zinc (Zn), and selenium (Se), in the transgenic mice tissues. We also examined the expression of Cu-dependent proteins in the inflammatory lung tissue to determine whether they were affected by the severe Cu deficiency, including cuproenzymes, Cu transporters, and Cu chaperones. We found consistent lung-specific reduction of the metal Cu, with a mean decrease of 70%; however, Zn and Se were unaffected in all other tissues. RT-PCR showed that two Cu enzymes associated with lung pathology were downregulated: amine oxidase, Cu containing 3 (Aoc3) and lysyl oxidase (Lox). Two factors, vascular endothelial growth factor (Vegf) and focal adhesion kinase (Fak), related with Cu deficiency treatment, showed decreased expression in the transgenic inflammatory lung. We concluded that Cu deficiency occurs following chronic TNF-α-induced lung inflammation and this likely plays an essential role in the inflammation-induced lung damage. These results suggest the restoration of lung Cu status as a potential strategy in both treatment and prevention of chronic lung inflammation and related disorders.

Keywords: COPD; biometals; inflammation; micronutrients; oxidative stress.

Figures

Figure 1
Figure 1
Representative lung morphology images showing the difference in size and color between H&E-stained lung sections of wild-type and SPC-TNF-α mice.
Figure 2
Figure 2
Mean data comparing the (A) mean linear intercept (MLI) and (B) body weight between wild-type (n = 7) and SPC-TNF-α (n = 7) mice. Data are expressed as mean ± SE. **Significantly different from control (p < 0.01).
Figure 3
Figure 3
Mean data showing the concentrations of (A) selenium (n = 7), (B) Zinc (n = 7), and (C) copper (n = 7) in tissues of wild-type and SPC-TNF-α mice. Mice tissues were isolated and digested, then quantified by ICP-MS. Concentrations were standardized using “wet” weight concentration (ng Se/mg tissue). Data are expressed as mean ± SE. *Significantly different from control (p < 0.05).
Figure 4
Figure 4
Representative gel images showing the expression of genes involved in Cu trafficking (transporters and chaperones) and several Cu enzymes critical to immunity and ECM structure analysis in lung tissues from SPC-TNF-α and WT mice.
Figure 5
Figure 5
Bar graph comparing the relative gene expression of WT and SPC-TNF-α lungs for two Cu transporters (Atp7a and Atp7b, n = 3 each); two Cu enzymes (Aoc3 and Lox, n = 3 each); and two signaling proteins reported to relate to Cu-status (Vegf and Fak, n = 3 each). Expression was quantified by ImageJ based on the gel images. Data are expressed as mean ± SE. *Significantly different from control (p < 0.05). **Significantly different from control (p < 0.01).
Figure 6
Figure 6
Schematic illustrating a putative mechanism underlying chronic inflammatory lung diseases involving Cu-deficiency-induced gene expression disruptions in TNF-α lungs. Tnf-α, tumor necrosis factor-α; Aoc3, amine oxidase, copper containing-3; Lox, lysyl oxidase; Vegf, vascular endothelial growth factor; Fak, focal adhesion kinase; Atp7a, copper-transporting P-type ATPase 7a.

References

    1. Barnes P. J. (2013). New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat. Rev. Drug Discov. 12, 543–559. 10.1038/nrd4025
    1. Berry M. A., Hargadon B., Shelley M., Parker D., Shaw D. E., Green R. H., et al. . (2006). Evidence of a role of tumor necrosis factor alpha in refractory asthma. N. Engl. J. Med. 354, 697–708. 10.1056/NEJMoa050580
    1. Braber S., Verheijden K. A., Henricks P. A., Kraneveld A. D., Folkerts G. (2010). A comparison of fixation methods on lung morphology in a murine model of emphysema. Am. J. Physiol. Lung Cell. Mol. Physiol. 299, L843–L851. 10.1152/ajplung.00192.2010
    1. Brusselle G. G., Joos G. F., Bracke K. R. (2011). New insights into the immunology of chronic obstructive pulmonary disease. Lancet 378, 1015–1026. 10.1016/S0140-6736(11)60988-4
    1. Canan C. H., Gokhale N. S., Carruthers B., Lafuse W. P., Schlesinger L. S., Torrelles J. B., et al. . (2014). Characterization of lung inflammation and its impact on macrophage function in aging. J. Leukoc. Biol. 96, 473–480. 10.1189/jlb.4A0214-093RR
    1. Chung K. F., Adcock I. M. (2008). Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur. Respir. J. 31, 1334–1356. 10.1183/09031936.00018908
    1. Churg A., Dai J., Tai H., Xie C., Wright J. L. (2002). Tumor necrosis factor-alpha is central to acute cigarette smoke-induced inflammation and connective tissue breakdown. Am. J. Respir. Crit. Care Med. 166, 849–854. 10.1164/rccm.200202-097OC
    1. Duncan C., White A. R. (2012). Copper complexes as therapeutic agents. Metallomics 4, 127–138. 10.1039/C2MT00174H
    1. Dunkel J., Aguilar−Pimentel J. A., Ollert M., Fuchs H., Gailus−Durner V., De Angelis M. H., et al. . (2014). Endothelial amine oxidase AOC3 transiently contributes to adaptive immune responses in the airways. Eur. J. Immunol. 44, 3232–3239. 10.1002/eji.201444563
    1. Eurlings I. M., Dentener M. A., Mercken E. M., De Cabo R., Bracke K. R., Vernooy J. H., et al. . (2014). A comparative study of matrix remodeling in chronic models for COPD; mechanistic insights into the role of TNF-α. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L557–L565. 10.1152/ajplung.00116.2014
    1. Fujita M., Shannon J. M., Irvin C. G., Fagan K. A., Cool C., Augustin A., et al. . (2001). Overexpression of tumor necrosis factor-alpha produces an increase in lung volumes and pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L39–L49.
    1. Fukai T., Ushio-Fukai M. (2011). Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 15, 1583–1606. 10.1089/ars.2011.3999
    1. Galli F., Battistoni A., Gambari R., Pompella A., Bragonzi A., Pilolli F., et al. . (2012). Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim. Biophys. Acta 1822, 690–713. 10.1016/j.bbadis.2011.12.012
    1. Gray R. D., Duncan A., Noble D., Imrie M., O'Reilly D. S., Innes J. A., et al. . (2010). Sputum trace metals are biomarkers of inflammatory and suppurative lung disease. Chest 137, 635–641. 10.1378/chest.09-1047
    1. Hodgkinson V., Petris M. J. (2012). Copper homeostasis at the host-pathogen interface. J. Biol. Chem. 287, 13549–13555. 10.1074/jbc.R111.316406
    1. Howard L., Ashley C., Lyon D., Shenkin A. (2007). Autopsy tissue trace elements in 8 long-term parenteral nutrition patients who received the current U.S. food and drug administration formulation. JPEN J. Parenter. Enteral Nutr. 31, 388–396. 10.1177/0148607107031005388
    1. Huang Z., Rose A. H., Hoffmann P. R. (2012). The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 16, 705–743. 10.1089/ars.2011.4145
    1. Kadrabova J., Mad'aric A., Podivinsky F., Gazdik F., Ginter E. (1996). Plasma zinc, copper and copper/zinc ratio in intrinsic asthma. J. Trace Elem. Med. Biol. 10, 50–53. 10.1016/S0946-672X(96)80008-3
    1. Karadag F., Cildag O., Altinisik M., Kozaci L. D., Kiter G., Altun C. (2004). Trace elements as a component of oxidative stress in COPD. Respirology 9, 33–37. 10.1111/j.1440-1843.2003.00534.x
    1. Karul A. B., Karadag F., Yensel N., Altinisik M., Altun C., Cildag O. (2003). Should chronic obstructive pulmonary disease outpatients be routinely evaluated for trace elements? Biol. Trace Elem. Res. 94, 41–48. 10.1385/BTER:94:1:41
    1. Keatings V. M., Collins P. D., Scott D. M., Barnes P. J. (1996). Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am. J. Respir. Crit. Care Med. 153, 530–534. 10.1164/ajrccm.153.2.8564092
    1. Klemm S. O., Topalov A. A., Laska C. A., Mayrhofer K. J. (2011). Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS. Electrochem. Commun. 13, 1533–1535. 10.1016/j.elecom.2011.10.017
    1. Koller L. D., Mulhern S. A., Frankel N. C., Steven M. G., Williams J. R. (1987). Immune dysfunction in rats fed a diet deficient in copper. Am. J. Clin. Nutr. 45, 997–1006.
    1. Kumarasamy A., Schmitt I., Nave A. H., Reiss I., Van Der Horst I., Dony E., et al. . (2009). Lysyl oxidase activity is dysregulated during impaired alveolarization of mouse and human lungs. Am. J. Respir. Crit. Care Med. 180, 1239–1252. 10.1164/rccm.200902-0215OC
    1. La Fontaine S., Mercer J. F. (2007). Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch. Biochem. Biophys. 463, 149–167. 10.1016/j.abb.2007.04.021
    1. Lucey E. C., Keane J., Kuang P. P., Snider G. L., Goldstein R. H. (2002). Severity of elastase-induced emphysema is decreased in tumor necrosis factor-alpha and interleukin-1beta receptor-deficient mice. Lab. Invest. 82, 79–85. 10.1038/labinvest.3780397
    1. Lundblad L. K., Thompson-Figueroa J., Leclair T., Sullivan M. J., Poynter M. E., Irvin C. G., et al. . (2005). Tumor necrosis factor-alpha overexpression in lung disease: a single cause behind a complex phenotype. Am. J. Respir. Crit. Care Med. 171, 1363–1370. 10.1164/rccm.200410-1349OC
    1. Luthje L., Raupach T., Michels H., Unsold B., Hasenfuss G., Kogler H., et al. . (2009). Exercise intolerance and systemic manifestations of pulmonary emphysema in a mouse model. Respir. Res. 10:7. 10.1186/1465-9921-10-7
    1. Mahabir S., Spitz M. R., Barrera S. L., Beaver S. H., Etzel C., Forman M. R. (2007). Dietary zinc, copper and selenium, and risk of lung cancer. Int. J. Cancer 120, 1108–1115. 10.1002/ijc.22451
    1. Mäki J. M., Sormunen R., Lippo S., Kaarteenaho-Wiik R., Soininen R., Myllyharju J. (2005). Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. Am. J. Pathol. 167, 927–936. 10.1016/S0002-9440(10)61183-2
    1. Malavolta M., Giacconi R., Piacenza F., Santarelli L., Cipriano C., Costarelli L., et al. . (2010). Plasma copper/zinc ratio: an inflammatory/nutritional biomarker as predictor of all-cause mortality in elderly population. Biogerontology 11, 309–319. 10.1007/s10522-009-9251-1
    1. Marklund S. L. (1982). Human copper-containing superoxide dismutase of high molecular weight. Proc. Natl. Acad. Sci. U.S.A. 79, 7634–7638. 10.1073/pnas.79.24.7634
    1. Miyazaki Y., Araki K., Vesin C., Garcia I., Kapanci Y., Whitsett J. A., et al. . (1995). Expression of a tumor necrosis factor-alpha transgene in murine lung causes lymphocytic and fibrosing alveolitis. A mouse model of progressive pulmonary fibrosis. J. Clin. Invest. 96, 250–259. 10.1172/JCI118029
    1. Mizuno S., Yasuo M., Bogaard H. J., Kraskauskas D., Alhussaini A., Gomez-Arroyo J., et al. . (2012). Copper deficiency induced emphysema is associated with focal adhesion kinase inactivation. PLoS ONE 7:e30678. 10.1371/journal.pone.0030678
    1. Munoz C., Rios E., Olivos J., Brunser O., Olivares M. (2007). Iron, copper and immunocompetence. Br. J. Nutr. 98(Suppl. 1), S24–S28. 10.1017/S0007114507833046
    1. Percival S. S. (1995). Neutropenia caused by copper deficiency: possible mechanisms of action. Nutr. Rev. 53, 59–66. 10.1111/j.1753-4887.1995.tb01503.x
    1. Percival S. S., Bowser E., Wagner M. (1995). Reduced copper enzyme activities in blood cells of children with cystic fibrosis. Am. J. Clin. Nutr. 62, 633–638.
    1. Prasad A. S. (2009). Zinc: role in immunity, oxidative stress and chronic inflammation. Curr. Opin. Clin. Nutr. Metab. Care 12, 646–652. 10.1097/MCO.0b013e3283312956
    1. Raghu G., Brown K. K., Costabel U., Cottin V., Du Bois R. M., Lasky J. A., et al. . (2008). Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 178, 948–955. 10.1164/rccm.200709-1446OC
    1. Rayman M. P. (2012). Selenium and human health. Lancet 379, 1256–1268. 10.1016/S0140-6736(11)61452-9
    1. Roman M., Jitaru P., Barbante C. (2014). Selenium biochemistry and its role for human health. Metallomics 6, 25–54. 10.1039/C3MT00185G
    1. Sakao S., Tatsumi K., Igari H., Watanabe R., Shino Y., Shirasawa H., et al. . (2002). Association of tumor necrosis factor-alpha gene promoter polymorphism with low attenuation areas on high-resolution CT in patients with COPD. Chest 122, 416–420. 10.1378/chest.122.2.416
    1. Sakhatskyy P., Gabino Miranda G. A., Newton J., Lee C. G., Choudhary G., Vang A., et al. . (2014). Cigarette smoke-induced lung endothelial apoptosis and emphysema are associated with impairment of FAK and eIF2α. Microvasc. Res. 94, 80–89. 10.1016/j.mvr.2014.05.003
    1. Tang K., Rossiter H. B., Wagner P. D., Breen E. C. (2004). Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J. Appl. Physiol. 97, 1559–1566. 10.1152/japplphysiol.00221.2004
    1. Tanrikulu A. C., Abakay A., Evliyaoglu O., Palanci Y. (2011). Coenzyme Q10, copper, zinc, and lipid peroxidation levels in serum of patients with chronic obstructive pulmonary disease. Biol. Trace Elem. Res. 143, 659–667. 10.1007/s12011-010-8897-5
    1. Thomson E. M., Williams A., Yauk C. L., Vincent R. (2012). Overexpression of tumor necrosis factor-alpha in the lungs alters immune response, matrix remodeling, and repair and maintenance pathways. Am. J. Pathol. 180, 1413–1430. 10.1016/j.ajpath.2011.12.020
    1. Vanek V. W., Borum P., Buchman A., Fessler T. A., Howard L., Jeejeebhoy K., et al. . (2012). A.S.P.E.N. position paper: recommendations for changes in commercially available parenteral multivitamin and multi-trace element products. Nutr. Clin. Pract. 27, 440–491. 10.1177/0884533612446706
    1. Vassallo R., Ryu J. H., Colby T. V., Hartman T., Limper A. H. (2000). Pulmonary Langerhans'-cell histiocytosis. N. Engl. J. Med. 342, 1969–1978. 10.1056/NEJM200006293422607
    1. Vettorazzi S., Bode C., Dejager L., Frappart L., Shelest E., Klaßen C., et al. . (2015). Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nat. Commun. 6:7796. 10.1038/ncomms8796
    1. Vuillemenot B. R., Rodriguez J. F., Hoyle G. W. (2004). Lymphoid tissue and emphysema in the lungs of transgenic mice inducibly expressing tumor necrosis factor-alpha. Am. J. Respir. Cell Mol. Biol. 30, 438–448. 10.1165/rcmb.2003-0062OC
    1. Xu W., Barrientos T., Andrews N. C. (2013). Iron and copper in mitochondrial diseases. Cell Metab. 17, 319–328. 10.1016/j.cmet.2013.02.004
    1. Zheng L., Han P., Liu J., Li R., Yin W., Wang T., et al. . (2015). Role of copper in regression of cardiac hypertrophy. Pharmacol. Ther. 148, 66–84. 10.1016/j.pharmthera.2014.11.014
    1. Zuo L., Hallman A. H., Roberts W. J., Wagner P. D., Hogan M. C. (2014). Superoxide release from contracting skeletal muscle in pulmonary TNF-alpha overexpression mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R75–R81. 10.1152/ajpregu.00425.2013
    1. Zuo L., Hallman A. H., Yousif M. K., Chien M. T. (2012). Oxidative stress, respiratory muscle dysfunction, and potential therapeutics in chronic obstructive pulmonary disease. Front. Biol. 7, 506–513. 10.1007/s11515-012-1251-x
    1. Zuo L., Nogueira L., Hogan M. C. (2011). Effect of pulmonary TNF-α overexpression on mouse isolated skeletal muscle function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1025–R1031. 10.1152/ajpregu.00126.2011
    1. Zuo L., Zhou T., Pannell B. K., Ziegler A. C., Best T. M. (2015). Biological and physiological role of reactive oxygen species–the good, the bad and the ugly. Acta Physiol. 214, 329–348. 10.1111/apha.12515

Source: PubMed

3
Subscribe