Phospholipids of Animal and Marine Origin: Structure, Function, and Anti-Inflammatory Properties

Ronan Lordan, Alexandros Tsoupras, Ioannis Zabetakis, Ronan Lordan, Alexandros Tsoupras, Ioannis Zabetakis

Abstract

In this review paper, the latest literature on the functional properties of phospholipids in relation to inflammation and inflammation-related disorders has been critically appraised and evaluated. The paper is divided into three sections: Section 1 presents an overview of the relationship between structures and biological activities (pro-inflammatory or anti-inflammatory) of several phospholipids with respect to inflammation. Section 2 and Section 3 are dedicated to the structures, functions, compositions and anti-inflammatory properties of dietary phospholipids from animal and marine sources. Most of the dietary phospholipids of animal origin come from meat, egg and dairy products. To date, there is very limited work published on meat phospholipids, undoubtedly due to the negative perception that meat consumption is an unhealthy option because of its putative associations with several chronic diseases. These assumptions are addressed with respect to the phospholipid composition of meat products. Recent research trends indicate that dairy phospholipids possess anti-inflammatory properties, which has led to an increased interest into their molecular structures and reputed health benefits. Finally, the structural composition of phospholipids of marine origin is discussed. Extensive research has been published in relation to ω-3 polyunsaturated fatty acids (PUFAs) and inflammation, however this research has recently come under scrutiny and has proved to be unreliable and controversial in terms of the therapeutic effects of ω-3 PUFA, which are generally in the form of triglycerides and esters. Therefore, this review focuses on recent publications concerning marine phospholipids and their structural composition and related health benefits. Finally, the strong nutritional value of dietary phospholipids are highlighted with respect to marine and animal origin and avenues for future research are discussed.

Keywords: anti-inflammatory; atherosclerosis; dairy; egg; inflammation; marine; meat; nutrition; phospholipids.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The most common structures of phospholipids are depicted: phospholipids with a glycerol backbone (GPLs); sphingomyelin as a representative of a sphingosine-backbone phospholipid (SPLs); and alkyl-phospholipids (Alkyl-GPLs) that have a fatty chain linked with an ether-bond at the sn-1 position of the glycerol backbone.
Figure 2
Figure 2
Illustration of the milk fat globule membrane. The sizes in this schematic are not in proportion. A phospholipid monolayer surrounds the triacylglycerol core, followed by a proteinaceous coat connecting the monolayer to the outer phospholipid bilayer. Adipophilin (ADPH) is located in the inner layer polar lipid layer, while xanthine dehydrogenase/oxidase (XDH/XO) is located between both layers. PE, PS and PI are generally concentrated on the inner surface of the membrane, whereas PC, SM, glycolipids (G), cerebrosides and gangliosides are mainly located in the external membrane. SM and cholesterol (C) can form rigid domains in the cellular membrane known as lipid rafts. Glycoproteins are distributed over the external membrane surface; these include butyrophilin (BTN), Mucin 1 (MUC1), PAS 6/7 and CD36.
Figure 3
Figure 3
Structures of bioactive marine phospholipids as elucidated previously by Sioriki et al. and Nasopoulou et al. [80,85]. Generally, PC and PE derivatives exhibit the greatest bioactivity in marine sources.

References

    1. Castro-Gómez P., Garcia-Serrano A., Visioli F., Fontecha J. Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins Leukot. Essent. Fatty Acids. 2015;101:41–51. doi: 10.1016/j.plefa.2015.07.004.
    1. Contarini G., Povolo M. Phospholipids in milk fat: Composition, biological and technological significance, and analytical strategies. Int. J. Mol. Sci. 2013;14:2808–2831. doi: 10.3390/ijms14022808.
    1. Rombaut R., Dewettinck K. Properties, analysis and purification of milk polar lipids. Int. Dairy J. 2006;16:1362–1373. doi: 10.1016/j.idairyj.2006.06.011.
    1. Caforio A., Driessen A.J.M. Archaeal phospholipids: Structural properties and biosynthesis. Biochim. Biophys. Acta. 2017;1862:1325–1339. doi: 10.1016/j.bbalip.2016.12.006.
    1. Demopoulos C., Pinckard R., Hanahan D.J. Platelet-activating factor. Evidence for 1-o-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators) J. Biol. Chem. 1979;254:9355–9358.
    1. Megson I.L., Whitfield P.D., Zabetakis I. Lipids and cardiovascular disease: Where does dietary intervention sit alongside statin therapy? Food Funct. 2016;7:2603–2614. doi: 10.1039/C6FO00024J.
    1. Tsoupras A.B., Iatrou C., Frangia C., Demopoulos C.A. The implication of platelet activating factor in cancer growth and metastasis: Potent beneficial role of paf-inhibitors and antioxidants. Infect. Disord.-Drug Targets (Former. Curr. Drug Targets-Infect. Disord.) 2009;9:390–399. doi: 10.2174/187152609788922555.
    1. Küllenberg D., Taylor L.A., Schneider M., Massing U. Health effects of dietary phospholipids. Lipids Health Dis. 2012;11:1. doi: 10.1186/1476-511X-11-3.
    1. Zhang K. Omega-3 phospholipids. In: Ahmad M.U., Xu X., editors. Polar Lipids: Biology, Chemistry, and Technology. AOCS Press; Urbana, IL, USA: 2015. pp. 463–493.
    1. Mollinedo F., Gajate C. Fas/cd95 death receptor and lipid rafts: New targets for apoptosis-directed cancer therapy. Drug Resist. Updat. 2006;9:51–73. doi: 10.1016/j.drup.2006.04.002.
    1. Tessaro F.H., Ayala T.S., Martins J.O. Lipid mediators are critical in resolving inflammation: A review of the emerging roles of eicosanoids in diabetes mellitus. BioMed Res. Int. 2015;2015:568408. doi: 10.1155/2015/568408.
    1. Gundermann K.-J., Gundermann S., Drozdzik M., Prasad V.M. Essential phospholipids in fatty liver: A scientific update. Clin. Exp. Gastroenterol. 2016;9:105.
    1. Choy C.H., Han B.-K., Botelho R.J. Phosphoinositide diversity, distribution, and effector function: Stepping out of the box. Bioessays. 2017 doi: 10.1002/bies.201700121.
    1. Mejia E.M., Hatch G.M. Mitochondrial phospholipids: Role in mitochondrial function. J. Bioenerg. Biomembr. 2016;48:99–112. doi: 10.1007/s10863-015-9601-4.
    1. Vance J.E. Phospholipid synthesis and transport in mammalian cells. Traffic. 2015;16:1–18. doi: 10.1111/tra.12230.
    1. Henneberry A.L., Wright M.M., McMaster C.R. The major sites of cellular phospholipid synthesis and molecular determinants of fatty acid and lipid head group specificity. Mol. Biol. Cell. 2002;13:3148–3161. doi: 10.1091/mbc.01-11-0540.
    1. Vance J.E., Vance D.E. Biochemistry of Lipids, Lipoproteins and Membranes. 5th ed. Elsevier; Oxford, UK: 2008.
    1. Vance J.E., Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta. 2013;1831:543–554. doi: 10.1016/j.bbalip.2012.08.016.
    1. Gardocki M.E., Jani N., Lopes J.M. Phosphatidylinositol biosynthesis: Biochemistry and regulation. Biochim. Biophys. Acta. 2005;1735:89–100. doi: 10.1016/j.bbalip.2005.05.006.
    1. Maceyka M., Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature. 2014;510:58–67. doi: 10.1038/nature13475.
    1. Zemski Berry K.A., Murphy R.C. Free radical oxidation of plasmalogen glycerophosphocholine containing esterified docosahexaenoic acid: Structure determination by mass spectrometry. Antioxid. Redox Signal. 2005;7:157–169. doi: 10.1089/ars.2005.7.157.
    1. Braverman N.E., Moser A.B. Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta. 2012;1822:1442–1452. doi: 10.1016/j.bbadis.2012.05.008.
    1. Lordan R., Zabetakis I. Invited review: The anti-inflammatory properties of dairy lipids. J. Dairy Sci. 2017;100:4197–4212. doi: 10.3168/jds.2016-12224.
    1. O’Keefe J.H., Gheewala N.M., O’Keefe J.O. Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health. J. Am. Coll. Cardiol. 2008;51:249–255. doi: 10.1016/j.jacc.2007.10.016.
    1. Lecomte M., Bourlieu C., Meugnier E., Penhoat A., Cheillan D., Pineau G., Loizon E., Trauchessec M., Claude M., Ménard O. Milk polar lipids affect in vitro digestive lipolysis and postprandial lipid metabolism in mice. J. Nutr. 2015;145:1770–1777. doi: 10.3945/jn.115.212068.
    1. O’Keefe J.H., Bell D.S.H. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am. J. Cardiol. 2007;100:899–904. doi: 10.1016/j.amjcard.2007.03.107.
    1. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428. doi: 10.1038/nature07201.
    1. Demopoulos C.A., Karantonis H.C., Antonopoulou S. Platelet activating factor—A molecular link between atherosclerosis theories. Eur. J. Lipid Sci. Technol. 2003;105:705–716. doi: 10.1002/ejlt.200300845.
    1. Libby P., Ridker P.M., Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–1143. doi: 10.1161/hc0902.104353.
    1. Kotas M.E., Medzhitov R. Homeostasis, inflammation, and disease susceptibility. Cell. 2015;160:816–827. doi: 10.1016/j.cell.2015.02.010.
    1. Ross R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999;340:115–126. doi: 10.1056/NEJM199901143400207.
    1. Greenberg A.S., Obin M.S. Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 2006;83:461S–465S.
    1. Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010;49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006.
    1. Van Eldik L.J., Carrillo M.C., Cole P.E., Feuerbach D., Greenberg B.D., Hendrix J.A., Kennedy M., Kozauer N., Margolin R.A., Molinuevo J.L., et al. The roles of inflammation and immune mechanisms in alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2016;2:99–109. doi: 10.1016/j.trci.2016.05.001.
    1. DeBoer M.D. Obesity, systemic inflammation, and increased risk for cardiovascular disease and diabetes among adolescents: A need for screening tools to target interventions. Nutrition. 2013;29:379–386. doi: 10.1016/j.nut.2012.07.003.
    1. Garcia C., Feve B., Ferré P., Halimi S., Baizri H., Bordier L., Guiu G., Dupuy O., Bauduceau B., Mayaudon H. Diabetes and inflammation: Fundamental aspects and clinical implications. Diabetes Metab. 2010;36:327–338. doi: 10.1016/j.diabet.2010.07.001.
    1. Liao K.P. Cardiovascular disease in patients with rheumatoid arthritis. Trends. Cardiovasc. Med. 2017;27:136–140. doi: 10.1016/j.tcm.2016.07.006.
    1. Tsoupras A.B., Antonopoulou S., Baltas G., Samiotaki M., Panayotou G., Kotsifaki H., Mantzavinos Z., Demopoulos C.A. Isolation and identification of hydroxyl–platelet-activating factor from natural sources. Life Sci. 2006;79:1796–1803. doi: 10.1016/j.lfs.2006.06.009.
    1. Antonopoulou S., Tsoupras A., Baltas G., Kotsifaki H., Mantzavinos Z., Demopoulos C.A. Hydroxyl-platelet-activating factor exists in blood of healthy volunteers and periodontal patients. Mediat. Inflamm. 2003;12:221–227. doi: 10.1080/09629350310001599666.
    1. Nguyen M.A., Satoh H., Favelyukis S., Babendure J.L., Imamura T., Sbodio J.I., Zalevsky J., Dahiyat B.I., Chi N.-W., Olefsky J.M. Jnk and tumor necrosis factor-α mediate free fatty acid-induced insulin resistance in 3t3-l1 adipocytes. J. Biol. Chem. 2005;280:35361–35371. doi: 10.1074/jbc.M504611200.
    1. Tsoupras A.B., Chini M., Mangafas N., Tsogas N., Stamatakis G., Tsantila N., Fragopoulou E., Antonopoulou S., Gargalianos P., Demopoulos C.A., et al. Platelet-activating factor and its basic metabolic enzymes in blood of naive hiv-infected patients. Angiology. 2012;63:343–352. doi: 10.1177/0003319711420608.
    1. Meirow Y., Baniyash M. Immune biomarkers for chronic inflammation related complications in non-cancerous and cancerous diseases. Cancer Immunol. Immunother. 2017;66:1089–1101. doi: 10.1007/s00262-017-2035-6.
    1. Burri L., Hoem N., Banni S., Berge K. Marine omega-3 phospholipids: Metabolism and biological activities. Int. J. Mol. Sci. 2012;13:15401–15419. doi: 10.3390/ijms131115401.
    1. Zabetakis I. Food security and cardioprotection: The polar lipid link. J. Food Sci. 2013;78:1101–1104. doi: 10.1111/1750-3841.12194.
    1. Dennis E.A., Norris P.C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 2015;15:511–523. doi: 10.1038/nri3859.
    1. Calder P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta. 2015;1851:469–484. doi: 10.1016/j.bbalip.2014.08.010.
    1. Ardies C.M. Diet, Excercise and Chronic Disease: The Biological Basis of Prevention. CRC Press; Boca Raton, FL, USA: 2014.
    1. Simopoulos A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008;233:674–688. doi: 10.3181/0711-MR-311.
    1. De Caterina R. N-3 fatty acids in cardiovascular disease. N. Engl. J. Med. 2011;364:2439–2450. doi: 10.1056/NEJMra1008153.
    1. Murphy K.J., Meyer B.J., Mori T.A., Burke V., Mansour J., Patch C.S., Tapsell L.C., Noakes M., Clifton P.A., Barden A., et al. Impact of foods enriched with n-3 long-chain polyunsaturated fatty acids on erythrocyte n-3 levels and cardiovascular risk factors. Br. J. Nutr. 2007;97:749–757. doi: 10.1017/S000711450747252X.
    1. Simopoulos A. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients. 2016;8:128. doi: 10.3390/nu8030128.
    1. Rizos E.C., Ntzani E.E., Bika E., Kostapanos M.S., Elisaf M.S. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: A systematic review and meta-analysis. JAMA. 2012;308:1024–1033. doi: 10.1001/2012.jama.11374.
    1. Enns J.E., Yeganeh A., Zarychanski R., Abou-Setta A.M., Friesen C., Zahradka P., Taylor C.G. The impact of omega-3 polyunsaturated fatty acid supplementation on the incidence of cardiovascular events and complications in peripheral arterial disease: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2014;14:70. doi: 10.1186/1471-2261-14-70.
    1. Kwak S., Myung S., Lee Y., Seo H., Korean Meta-Analysis Study Group Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: A meta-analysis of randomized, double-blind, placebo-controlled trials. Arch. Intern. Med. 2012;172:686–694.
    1. Walz C.P., Barry A.R., Koshman S.L. Omega-3 polyunsaturated fatty acid supplementation in the prevention of cardiovascular disease. Can. Pharm. J. 2016;149:166–173. doi: 10.1177/1715163516640812.
    1. Chowdhury R., Stevens S., Gorman D., Pan A., Warnakula S., Chowdhury S., Ward H., Johnson L., Crowe F., Hu F.B. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: Systematic review and meta-analysis. BMJ. 2012;345:e6698. doi: 10.1136/bmj.e6698.
    1. Hishikawa D., Valentine W.J., Iizuka-Hishikawa Y., Shindou H., Shimizu T. Metabolism and functions of docosahexaenoic acid-containing membrane glycerophospholipids. FEBS. Lett. 2017;591:2730–2744. doi: 10.1002/1873-3468.12825.
    1. Murru E., Banni S., Carta G. Nutritional properties of dietary omega-3-enriched phospholipids. BioMed Res. Int. 2013;2013:965417. doi: 10.1155/2013/965417.
    1. Murray M., Hraiki A., Bebawy M., Pazderka C., Rawling T. Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs. Pharmacol. Ther. 2015;150:109–128. doi: 10.1016/j.pharmthera.2015.01.008.
    1. Wallner S., Schmitz G. Plasmalogens the neglected regulatory and scavenging lipid species. Chem. Phys. Lipids. 2011;164:573–589. doi: 10.1016/j.chemphyslip.2011.06.008.
    1. Bochkov V., Gesslbauer B., Mauerhofer C., Philippova M., Erne P., Oskolkova O.V. Pleiotropic effects of oxidized phospholipids. Free Radic. Biol. Med. 2017;111:6–24. doi: 10.1016/j.freeradbiomed.2016.12.034.
    1. Reis A. Oxidative phospholipidomics in health and disease: Achievements, challenges and hopes. Free Radic. Biol. Med. 2017;111:25–37. doi: 10.1016/j.freeradbiomed.2017.01.014.
    1. Venable M.E., Zimmerman G.A., McIntyre T.M., Prescott S.M. Platelet-activating factor: A phospholipid autacoid with diverse actions. J. Lipid Res. 1993;34:691–702.
    1. Triggiani M., Schleimer R., Warner J., Chilton F. Differential synthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine and platelet-activating factor by human inflammatory cells. J. Immunol. 1991;147:660–666.
    1. Francescangeli E., Freysz L., Goracci G. Paf-synthesizing enzymes in neural cells during differentiation and in gerbil brain during ischemia. In: Snyder F., editor. Platelet-Activating Factor and Related Lipid Mediators 2. Springer; Berlin, Germany: 1996. pp. 21–27.
    1. Palur Ramakrishnan A.V.K., Varghese T.P., Vanapalli S., Nair N.K., Mingate M.D. Platelet activating factor: A potential biomarker in acute coronary syndrome? Cardiovasc. Ther. 2017;35:64–70. doi: 10.1111/1755-5922.12233.
    1. Castro Faria Neto H.C., Stafforini D.M., Prescott S.M., Zimmerman G.A. Regulating inflammation through the anti-inflammatory enzyme platelet-activating factor-acetylhydrolase. Mem. Inst. Oswaldo Cruz. 2005;100:83–91. doi: 10.1590/S0074-02762005000900014.
    1. Melnikova V., Bar-Eli M. Inflammation and melanoma growth and metastasis: The role of platelet-activating factor (paf) and its receptor. Cancer Metastasis Rev. 2007;26:359. doi: 10.1007/s10555-007-9092-9.
    1. Reznichenko A., Korstanje R. The role of platelet-activating factor in mesangial pathophysiology. Am. J. Pathol. 2015;185:888–896. doi: 10.1016/j.ajpath.2014.11.025.
    1. Feige E., Mendel I., George J., Yacov N., Harats D. Modified phospholipids as anti-inflammatory compounds. Curr. Opin. Lipidol. 2010;21:525–529. doi: 10.1097/MOL.0b013e32833f2fcb.
    1. Papakonstantinou V.D., Lagopati N., Tsilibary E.C., Demopoulos C.A., Philippopoulos A.I. A review on platelet activating factor inhibitors: Could a new class of potent metal-based anti-inflammatory drugs induce anticancer properties? Bioinorg. Chem. Appl. 2017;2017:6947034. doi: 10.1155/2017/6947034.
    1. Singh P., Singh I.N., Mondal S.C., Singh L., Garg V.K. Platelet-activating factor (paf)-antagonists of natural origin. Fitoterapia. 2013;84:180–201. doi: 10.1016/j.fitote.2012.11.002.
    1. Fragopoulou E., Nomikos T., Tsantila N., Mitropoulou A., Zabetakis I., Demopoulos C.A. Biological activity of total lipids from red and white wine/must. J. Agric. Food Chem. 2001;49:5186–5193. doi: 10.1021/jf0106392.
    1. Xanthopoulou M.N., Asimakopoulos D., Antonopoulou S., Demopoulos C.A., Fragopoulou E. Effect of robola and cabernet sauvignon extracts on platelet activating factor enzymes activity on u937 cells. Food Chem. 2014;165:50–59. doi: 10.1016/j.foodchem.2014.05.085.
    1. Xanthopoulou M.N., Kalathara K., Melachroinou S., Arampatzi-Menenakou K., Antonopoulou S., Yannakoulia M., Fragopoulou E. Wine consumption reduced postprandial platelet sensitivity against platelet activating factor in healthy men. Eur. J. Nutr. 2016:1–8. doi: 10.1007/s00394-016-1194-0.
    1. Argyrou C., Vlachogianni I., Stamatakis G., Demopoulos C.A., Antonopoulou S., Fragopoulou E. Postprandial effects of wine consumption on platelet activating factor metabolic enzymes. Prostaglandins Other Lipid Mediat. 2017;130:23–29. doi: 10.1016/j.prostaglandins.2017.03.002.
    1. Fragopoulou E., Nomikos T., Antonopoulou S., Mitsopoulou C.A., Demopoulos C.A. Separation of biologically active lipids from red wine. J. Agric. Food. Chem. 2000;48:1234–1238. doi: 10.1021/jf990554p.
    1. Fragopoulou E., Antonopoulou S., Tsoupras A., Tsantila N., Grypioti A., Gribilas G., Gritzapi H., Konsta E., Skandalou E., Papadopoulou A. Antiatherogenic properties of Red/White Wine, Musts, Grape-Skins, and Yeast; Proceedings of the 45th International Conference on the Bioscience of Lipids; Ioannina, Greece. 25–29 May 2004; Ioannina, Greece: Elsevier; p. 66.
    1. Sioriki E., Nasopoulou C., Demopoulos C.A., Zabetakis I. Comparison of sensory and cardioprotective properties of olive-pomace enriched and conventional gilthead sea bream (Sparus aurata): The effect of grilling. J. Aquat. Food Prod. Technol. 2015;24:782–795. doi: 10.1080/10498850.2013.813100.
    1. Sioriki E., Smith T.K., Demopoulos C.A., Zabetakis I. Structure and cardioprotective activities of polar lipids of olive pomace, olive pomace-enriched fish feed and olive pomace fed gilthead sea bream (Sparus aurata) Food Res. Int. 2016;83:143–151. doi: 10.1016/j.foodres.2016.03.015.
    1. Nasopoulou C., Karantonis H.C., Perrea D.N., Theocharis S.E., Iliopoulos D.G., Demopoulos C.A., Zabetakis I. In vivo anti-atherogenic properties of cultured gilthead sea bream (Sparus aurata) polar lipid extracts in hypercholesterolaemic rabbits. Food Chem. 2010;120:831–836. doi: 10.1016/j.foodchem.2009.11.023.
    1. Nasopoulou C., Nomikos T., Demopoulos C., Zabetakis I. Comparison of antiatherogenic properties of lipids obtained from wild and cultured sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) Food Chem. 2007;100:560–567. doi: 10.1016/j.foodchem.2005.09.074.
    1. Nasopoulou C., Tsoupras A.B., Karantonis H.C., Demopoulos C.A., Zabetakis I. Fish polar lipids retard atherosclerosis in rabbits by down-regulating paf biosynthesis and up-regulating paf catabolism. Lipids Health Dis. 2011;10:1–18. doi: 10.1186/1476-511X-10-213.
    1. Rementzis J., Antonopoulou S., Argyropoulos D., Demopoulos C.A. Biologically active lipids from s. Scombrus. In: Nigam S., Kunkel G., Prescott S.M., editors. Platelet-Activating Factor and Related Lipid Mediators 2: Roles in Health and Disease. Springer; Boston, MA, USA: 1996. pp. 65–72.
    1. Nasopoulou C., Smith T., Detopoulou M., Tsikrika C., Papaharisis L., Barkas D., Zabetakis I. Structural elucidation of olive pomace fed sea bass (Dicentrarchus labrax) polar lipids with cardioprotective activities. Food Chem. 2014;145:1097–1105. doi: 10.1016/j.foodchem.2013.08.091.
    1. Panayiotou A., Samartzis D., Nomikos T., Fragopoulou E., Karantonis H.C., Demopoulos C.A., Zabetakis I. Lipid fractions with aggregatory and antiaggregatory activity toward platelets in fresh and fried cod (Gadus morhua): Correlation with platelet-activating factor and atherogenesis. J. Agric. Food Chem. 2000;48:6372–6379. doi: 10.1021/jf000701f.
    1. Tsoupras A.B., Fragopoulou E., Nomikos T., Iatrou C., Antonopoulou S., Demopoulos C.A. Characterization of the de novo biosynthetic enzyme of platelet activating factor, ddt-insensitive cholinephosphotransferase, of human mesangial cells. Mediat. Inflamm. 2007;2007:27683. doi: 10.1155/2007/27683.
    1. Karantonis H.C., Antonopoulou S., Demopoulos C.A. Antithrombotic lipid minor constituents from vegetable oils. Comparison between olive oils and others. J. Agric. Food Chem. 2002;50:1150–1160. doi: 10.1021/jf010923t.
    1. Karantonis H.C., Antonopoulou S., Perrea D.N., Sokolis D.P., Theocharis S.E., Kavantzas N., Iliopoulos D.G., Demopoulos C.A. In vivo antiatherogenic properties of olive oil and its constituent lipid classes in hyperlipidemic rabbits. Nutr. Metab. Cardiovasc. Dis. 2006;16:174–185. doi: 10.1016/j.numecd.2005.07.003.
    1. Tsantila N., Karantonis H.C., Perrea D.N., Theocharis S.E., Iliopoulos D.G., Antonopoulou S., Demopoulos C.A. Antithrombotic and antiatherosclerotic properties of olive oil and olive pomace polar extracts in rabbits. Mediat. Inflamm. 2007;2007:36204. doi: 10.1155/2007/36204.
    1. Tsoupras A., Fragopoulou E., Iatrou C., Demopoulos C. In vitro protective effects of olive pomace polar lipids towards platelet activating factor metabolism in human renal cells. Curr. Top. Nutraceutical Res. 2011;9:105.
    1. Nasopoulou C., Gogaki V., Panagopoulou E., Demopoulos C., Zabetakis I. Hen egg yolk lipid fractions with antiatherogenic properties. J. Anim. Sci. 2013;84:264–271. doi: 10.1111/j.1740-0929.2012.01067.x.
    1. Tsorotioti S.E., Nasopoulou C., Detopoulou M., Sioriki E., Demopoulos C.A., Zabetakis I. In vitro anti-atherogenic properties of traditional greek cheese lipid fractions. Dairy Sci. Technol. 2014;94:269–281. doi: 10.1007/s13594-014-0161-x.
    1. Poutzalis S., Anastasiadou A., Nasopoulou C., Megalemou K., Sioriki E., Zabetakis I. Evaluation of the in vitro anti-atherogenic activities of goat milk and goat dairy products. Dairy Sci. Technol. 2016;96:317–327. doi: 10.1007/s13594-015-0266-x.
    1. Megalemou K., Sioriki E., Lordan R., Dermiki M., Nasopoulou C., Zabetakis I. Evaluation of sensory and in vitro anti-thrombotic properties of traditional greek yogurts derived from different types of milk. Heliyon. 2017;3:e00227. doi: 10.1016/j.heliyon.2016.e00227.
    1. Thomson A.B.R., Keelan M., Garg M.L., Clandinin M.T. Intestinal aspects of lipid absorption: In review. Can. J. Physiol. Pharmacol. 1989;67:179–191. doi: 10.1139/y89-031.
    1. Ramırez M., Amate L., Gil A. Absorption and distribution of dietary fatty acids from different sources. Early Hum. Dev. 2001;65:S95–S101. doi: 10.1016/S0378-3782(01)00211-0.
    1. Zierenberg O., Grundy S. Intestinal absorption of polyenephosphatidylcholine in man. J. Lipid Res. 1982;23:1136–1142.
    1. Tall A.R., Blum C.B., Grundy S.M. Incorporation of radioactive phospholipid into subclasses of high-density lipoproteins. Am. J. Physiol. Endocrinol. Metab. 1983;244:E513–E516.
    1. Carey M.C., Small D.M., Bliss C.M. Lipid digestion and absorption. Annu. Rev. Physiol. 1983;45:651–677. doi: 10.1146/annurev.ph.45.030183.003251.
    1. Hussain M.M. Intestinal lipid absorption and lipoprotein formation. Curr. Opin. Lipidol. 2014;25:200–206. doi: 10.1097/MOL.0000000000000084.
    1. Ohlsson L., Hertervig E., Jönsson B.A., Duan R.-D., Nyberg L., Svernlöv R., Nilsson Å. Sphingolipids in human ileostomy content after meals containing milk sphingomyelin. Am. J. Clin. Nutr. 2010;91:672–678. doi: 10.3945/ajcn.2009.28311.
    1. Amate L., Gil A., Ramírez M. Feeding infant piglets formula with long-chain polyunsaturated fatty acids as triacylglycerols or phospholipids influences the distribution of these fatty acids in plasma lipoprotein fractions. J. Nutr. 2001;131:1250–1255.
    1. Buang Y., Wang Y.-M., Cha J.-Y., Nagao K., Yanagita T. Dietary phosphatidylcholine alleviates fatty liver induced by orotic acid. Nutrition. 2005;21:867–873. doi: 10.1016/j.nut.2004.11.019.
    1. Hartmann P., Szabó A., Erős G., Gurabi D., Horváth G., Németh I., Ghyczy M., Boros M. Anti-inflammatory effects of phosphatidylcholine in neutrophil leukocyte-dependent acute arthritis in rats. Eur. J. Pharmacol. 2009;622:58–64. doi: 10.1016/j.ejphar.2009.09.012.
    1. Lee H.S., Nam Y., Chung Y.H., Kim H.R., Park E.S., Chung S.J., Kim J.H., Sohn U.D., Kim H.-C., Oh K.W., et al. Beneficial effects of phosphatidylcholine on high-fat diet-induced obesity, hyperlipidemia and fatty liver in mice. Life Sci. 2014;118:7–14. doi: 10.1016/j.lfs.2014.09.027.
    1. Tőkés T., Tuboly E., Varga G., Major L., Ghyczy M., Kaszaki J., Boros M. Protective effects of l-alpha-glycerylphosphorylcholine on ischaemia–reperfusion-induced inflammatory reactions. Eur. J. Nutr. 2015;54:109–118. doi: 10.1007/s00394-014-0691-2.
    1. Abbasi A., Dallinga-Thie G.M., Dullaart R.P.F. Phospholipid transfer protein activity and incident type 2 diabetes mellitus. Clin. Chim. Acta. 2015;439:38–41. doi: 10.1016/j.cca.2014.09.035.
    1. O’Brien B.C., Andrews V.G. Influence of dietary egg and soybean phospholipids and triacylglycerols on human serum lipoproteins. Lipids. 1993;28:7–12. doi: 10.1007/BF02536352.
    1. Scholey A.B., Camfield D.A., Hughes M.E., Woods W., K Stough C.K., White D.J., Gondalia S.V., Frederiksen P.D. A randomized controlled trial investigating the neurocognitive effects of lacprodan® pl-20, a phospholipid-rich milk protein concentrate, in elderly participants with age-associated memory impairment: The phospholipid intervention for cognitive ageing reversal (plicar): Study protocol for a randomized controlled trial. Trials. 2013;14:404.
    1. Dasgupta S., Bhattacharyya D.K. Dietary effect of eicosapentaenoic acid (epa) containing soyphospholipid. J. Oleo Sci. 2007;56:563–568. doi: 10.5650/jos.56.563.
    1. Shirouchi B., Nagao K., Inoue N., Ohkubo T., Hibino H., Yanagita T. Effect of dietary omega 3 phosphatidylcholine on obesity-related disorders in obese otsuka long-evans tokushima fatty rats. J. Agric. Food Chem. 2007;55:7170–7176. doi: 10.1021/jf071225x.
    1. Cohn J., Kamili A., Wat E., Chung R.W., Tandy S. Dietary phospholipids and intestinal cholesterol absorption. Nutrients. 2010;2:116–127. doi: 10.3390/nu2020116.
    1. Blesso C. Egg phospholipids and cardiovascular health. Nutrients. 2015;7:2731–2747. doi: 10.3390/nu7042731.
    1. Tellis C.C., Tselepis A. Pathophysiological role and clinical significance of lipoprotein-associated phospholipase a2 (lp-pla2) bound to ldl and hdl. Curr. Pharm. Des. 2014;20:6256–6269. doi: 10.2174/1381612820666140622200916.
    1. Rizzo M., Otvos J., Nikolic D., Montalto G., Toth P., Banach M. Subfractions and subpopulations of hdl: An update. Curr. Med. Chem. 2014;21:2881–2891. doi: 10.2174/0929867321666140414103455.
    1. Marathe G.K., Pandit C., Lakshmikanth C.L., Chaithra V.H., Jacob S.P., D’Souza C.J.M. To hydrolyze or not to hydrolyze: The dilemma of platelet-activating factor acetylhydrolase. J. Lipid Res. 2014;55:1847–1854. doi: 10.1194/jlr.R045492.
    1. Givens D. Saturated fats, dairy foods and health: A curious paradox? Nutr. Bull. 2017;42:274–282. doi: 10.1111/nbu.12283.
    1. Givens D., Livingstone K., Pickering J., Fekete Á., Dougkas A., Elwood P. Milk: White elixir or white poison? An examination of the associations between dairy consumption and disease in human subjects. Anim. Front. 2014;4:8–15. doi: 10.2527/af.2014-0009.
    1. Fernandez L.M. Eggs and health special issue. Nutrients. 2016;8:784. doi: 10.3390/nu8120784.
    1. De Smet S., Vossen E. Meat: The balance between nutrition and health. A review. Meat Sci. 2016;120:145–156. doi: 10.1016/j.meatsci.2016.04.008.
    1. McNeill S.H. Inclusion of red meat in healthful dietary patterns. Meat Sci. 2014;98:452–460. doi: 10.1016/j.meatsci.2014.06.028.
    1. Andersen C.J. Bioactive egg components and inflammation. Nutrients. 2015;7:7889–7913. doi: 10.3390/nu7095372.
    1. Weihrauch J.L., Son Y.-S. Phospholipid content of foods. J. Am. Oil Chem. Soc. 1983;60:1971–1978. doi: 10.1007/BF02669968.
    1. Lewis E.D., Zhao Y.-Y., Richard C., Bruce H.L., Jacobs R.L., Field C.J., Curtis J.M. Measurement of the abundance of choline and the distribution of choline-containing moieties in meat. Int. J. Food Sci. Nutr. 2015;66:743–748. doi: 10.3109/09637486.2015.1088942.
    1. Kunsman J.E., Field R.A. The lipid content of mechanically deboned red meats. J. Food Sci. 1976;41:1439–1441. doi: 10.1111/j.1365-2621.1976.tb01190.x.
    1. Gray G.M., Macfarlane M.G. Composition of phospholipids of rabbit, pigeon and trout muscle and various pig tissues. Biochem. J. 1961;81:480. doi: 10.1042/bj0810480.
    1. Kuchmak M., Dugan L.R. Phospholipids of pork muscle tissues. J. Am. Oil Chem. Soc. 1963;40:734–736. doi: 10.1007/BF02609657.
    1. Acosta S.O., Marion W.W., Forsythe R. Total lipids and phospholipids in turkey tissues. Poult. Sci. 1966;45:169–184. doi: 10.3382/ps.0450169.
    1. Wang D., Liu F., Zhu Y., Xu W. Changes of phospholipids in duck muscle by different heating methods. J. Food Process. Technol. 2011;2 doi: 10.4172/2157-7110.1000121.
    1. Zancada L., Pérez-Díez F., Sánchez-Juanes F., Alonso J., García-Pardo L., Hueso P. Phospholipid classes and fatty acid composition of ewe’s and goat’s milk. Grasas y Aceites. 2013;64:304–310.
    1. Thomas A.J., Patton S. Phospholipids of fish gills. Lipids. 1972;7:76–78. doi: 10.1007/BF02531274.
    1. Ackman R.G. Marine Biogenic Lipids, Fats and Oils. Volume 2 CRC Press; Boca Raton, FL, USA: 1989.
    1. Subra-Paternault P., ThongDeng H., Grélard A., Cansell M. Extraction of phospholipids from scallop by-product using supercritical co2/alcohol mixtures. LWT-Food Sci. Technol. 2015;60:990–998. doi: 10.1016/j.lwt.2014.09.057.
    1. Ishii K., Okajima H., Okada Y., Watanabe H. Studies on furan fatty acids of salmon roe phospholipids. J. Biochem. 1988;103:836–839. doi: 10.1093/oxfordjournals.jbchem.a122356.
    1. Nemova N.N., Murzina S.A., Nefedova Z.A., Veselov A.E. Features in the lipid status of two generations of fingerlings (0+) of atlantic salmon (Salmo salar L.) inhabiting the arenga river (kola peninsula) Int. J. Mol. Sci. 2015;16:17535–17545. doi: 10.3390/ijms160817535.
    1. Benedito-Palos L., Navarro J., Kaushik S., Pérez-Sánchez J. Tissue-specific robustness of fatty acid signatures in cultured gilthead sea bream (Sparus aurata L.) fed practical diets with a combined high replacement of fish meal and fish oil. J. Anim. Sci. 2010;88:1759–1770. doi: 10.2527/jas.2009-2564.
    1. Benedito-Palos L., Calduch-Giner J.A., Ballester-Lozano G.F., Pérez-Sánchez J. Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mrna expression patterns of lipid regulatory genes in gilthead sea bream (Sparus aurata) Br. J. Nutr. 2012;109:1175–1187. doi: 10.1017/S000711451200311X.
    1. Cordier M., Brichon G., Weber J.-M., Zwingelstein G. Changes in the fatty acid composition of phospholipids in tissues of farmed sea bass (Dicentrarchus labrax) during an annual cycle. Roles of environmental temperature and salinity. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2002;133:281–288. doi: 10.1016/S1096-4959(02)00149-5.
    1. Gallagher M.L., Paramore L., Alves D., Rulifson R.A. Comparison of phospholipid and fatty acid composition of wild and cultured striped bass eggs. J. Fish Biol. 1998;52:1218–1228. doi: 10.1111/j.1095-8649.1998.tb00967.x.
    1. Adeyeye E. Fatty acids, sterols and phospholipids levels in the muscle of acanthurus montoviaeand lutjanus goreensisfish. La Rivista Italiana Delle Sostanze Grasse. 2015;92:123–138.
    1. Wu J., Chan R., Wenk M.R., Hew C.-L. Lipidomic study of intracellular singapore grouper iridovirus. Virology. 2010;399:248–256. doi: 10.1016/j.virol.2010.01.016.
    1. Saito H., Ishikawa S. Lipid classes and fatty acid profile of cultured and wild black rockfish, sebastes schlegeli. J. Oleo Sci. 2014;63:555–566. doi: 10.5650/jos.ess13217.
    1. Hawthorne J.N., Ansell G.B. Phospholipids. Volume 4. Elsevier; Amsterdam, The Netherlands: 1982. p. 62.
    1. Ferioli F., Caboni M.F. Composition of phospholipid fraction in raw chicken meat and pre-cooked chicken patties: Influence of feeding fat sources and processing technology. Eur. Food Res. Technol. 2010;231:117–126. doi: 10.1007/s00217-010-1257-z.
    1. Lippi G., Mattiuzzi C., Cervellin G. Meat consumption and cancer risk: A critical review of published meta-analyses. Crit. Rev. Oncol. Hematol. 2016;97:1–14. doi: 10.1016/j.critrevonc.2015.11.008.
    1. Bovalino S., Charleson G., Szoeke C. The impact of red and processed meat consumption on cardiovascular disease risk in women. Nutrition. 2016;32:349–354. doi: 10.1016/j.nut.2015.09.015.
    1. Pérez-Palacios T., Ruiz J., Dewettinck K., Trung Le T., Antequera T. Individual phospholipid classes from iberian pig meat as affected by diet. J. Agric. Food Chem. 2010;58:1755–1760. doi: 10.1021/jf9029805.
    1. Keller J.D., Kinsella J.E. Phospholipid changes and lipid oxidation during cooking and frozen storage of raw ground beef. J. Food Sci. 1973;38:1200–1204. doi: 10.1111/j.1365-2621.1973.tb07238.x.
    1. Simopoulos A.P. Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Rev. Int. 2004;20:77–90. doi: 10.1081/FRI-120028831.
    1. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S., DuGar B., Feldstein A.E., Britt E.B., Fu X., Chung Y.-M., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922.
    1. Zhu W., Gregory J.C., Org E., Buffa J.A., Gupta N., Wang Z., Li L., Fu X., Wu Y., Mehrabian M. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111–124. doi: 10.1016/j.cell.2016.02.011.
    1. Wolk A. Potential health hazards of eating red meat. J. Intern. Med. 2017;281:106–122. doi: 10.1111/joim.12543.
    1. Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T., Britt E.B., Fu X., Wu Y., Li L., et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013;19:576–585. doi: 10.1038/nm.3145.
    1. Couatre D., Bell S. Is l-carnitine the link between red meat and heart disease? J. Nutr. Food Sci. 2013;3 doi: 10.4172/2155-9600.1000e119.
    1. Blank M.L., Cress E.A., Smith Z.L., Snyder F. Meats and fish consumed in the american diet contain substantial amounts of ether-linked phospholipids. J. Nutr. 1992;122:1656–1661.
    1. Lecomte M., Bourlieu C., Michalski M.-C. In: Nutritional Properties of Milk Lipids: Specific Function of the Milk Fat Globule in Dairy in Human Health and Disease across the Lifespan. Collier R.J., Preedy V.R., editors. Academic Press; Cambridge, MA, USA: 2017. pp. 435–452.
    1. Le T.T., Phan T.T.Q., Camp J.V., Dewettinck K. Milk and dairy polar lipids: Occurence, purification, nutritional and technological properties. In: Ahmad M.U., Xu X., editors. Polar Lipids: Biology, Chemistry, and Technology. AOCS Press; Urbana, IL, USA: 2015. pp. 91–143.
    1. Dewettinck K., Rombaut R., Thienpont N., Le T.T., Messens K., Van Camp J. Nutritional and technological aspects of milk fat globule membrane material. Int. Dairy J. 2008;18:436–457. doi: 10.1016/j.idairyj.2007.10.014.
    1. Lopez C. Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Curr. Opin. Colloid Interface Sci. 2011;16:391–404. doi: 10.1016/j.cocis.2011.05.007.
    1. Lopez C., Briard-Bion V., Ménard O. Polar lipids, sphingomyelin and long-chain unsaturated fatty acids from the milk fat globule membrane are increased in milks produced by cows fed fresh pasture based diet during spring. Food Res. Int. 2014;58:59–68. doi: 10.1016/j.foodres.2014.01.049.
    1. Rodríguez-Alcalá L.M., Fontecha J. Major lipid classes separation of buttermilk, and cows, goats and ewes milk by high performance liquid chromatography with an evaporative light scattering detector focused on the phospholipid fraction. J. Chromatogr. A. 2010;1217:3063–3066. doi: 10.1016/j.chroma.2010.02.073.
    1. Graves E.L.F., Beaulieu A.D., Drackley J.K. Factors affecting the concentration of sphingomyelin in bovine milk. J. Dairy Sci. 2007;90:706–715. doi: 10.3168/jds.S0022-0302(07)71554-0.
    1. Wiking L., Nielsen J.H., Båvius A.K., Edvardsson A., Svennersten-Sjaunja K. Impact of milking frequencies on the level of free fatty acids in milk, fat globule size, and fatty acid composition. J. Dairy Sci. 2006;89:1004–1009. doi: 10.3168/jds.S0022-0302(06)72166-X.
    1. Singh H. The milk fat globule membrane—A biophysical system for food applications. Curr. Opin. Colloid Interface Sci. 2006;11:154–163. doi: 10.1016/j.cocis.2005.11.002.
    1. Bitman J., Wood D.L. Changes in milk fat phospholipids during lactation. J. Dairy Sci. 1990;73:1208–1216. doi: 10.3168/jds.S0022-0302(90)78784-X.
    1. Rodríguez-Alcalá L., Castro-Gómez P., Felipe X., Noriega L., Fontecha J. Effect of processing of cow milk by high pressures under conditions up to 900 mpa on the composition of neutral, polar lipids and fatty acids. Food Sci. Technol. 2015;62:265–270. doi: 10.1016/j.lwt.2014.12.052.
    1. Lopez C., Briard-Bion V., Menard O., Rousseau F., Pradel P., Besle J.-M. Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. J. Agric. Food Chem. 2008;56:5226–5236. doi: 10.1021/jf7036104.
    1. Guerra E., Verardo V., Caboni M.F. Determination of bioactive compounds in cream obtained as a by-product during cheese-making: Influence of cows’ diet on lipid quality. Int. Dairy J. 2015;42:16–25. doi: 10.1016/j.idairyj.2014.11.004.
    1. Pimentel L., Gomes A., Pintado M., Rodríguez-Alcalá L.M. Isolation and analysis of phospholipids in dairy foods. J. Anal. Methods Chem. 2016;2016 doi: 10.1155/2016/9827369.
    1. Liu Z., Logan A., Cocks B.G., Rochfort S. Seasonal variation of polar lipid content in bovine milk. Food Chem. 2017;237:865–869. doi: 10.1016/j.foodchem.2017.06.038.
    1. Gallier S., Gragson D., Cabral C., Jiménez-Flores R., Everett D.W. Composition and fatty acid distribution of bovine milk phospholipids from processed milk products. J. Agric. Food Chem. 2010;58:10503–10511. doi: 10.1021/jf101878d.
    1. Fong B.Y., Norris C.S., MacGibbon A.K.H. Protein and lipid composition of bovine milk-fat-globule membrane. Int. Dairy J. 2007;17:275–288. doi: 10.1016/j.idairyj.2006.05.004.
    1. Laegreid A., Kolsto otnass A.-B., Fuglesang J. Human and bovine milk: Comparison of ganglioside composition and enterotoxin- inhibitory activity. Pediatr. Res. 1986;20:416–421. doi: 10.1203/00006450-198605000-00008.
    1. Rivas-Serna I.M., Polakowski R., Shoemaker G.K., Mazurak V.C., Clandinin M.T. Profiling gangliosides from milk products and other biological membranes using lc/ms. J. Food Compos. Anal. 2015;44:45–55. doi: 10.1016/j.jfca.2015.06.006.
    1. Cinque B., Di Marzio L., Centi C., Di Rocco C., Riccardi C., Grazia Cifone M. Sphingolipids and the immune system. Pharmacol. Res. 2003;47:421–437. doi: 10.1016/S1043-6618(03)00051-3.
    1. Deguchi H., Yegneswaran S., Griffin J.H. Sphingolipids as bioactive regulators of thrombin generation. J. Biol. Chem. 2004;279:12036–12042. doi: 10.1074/jbc.M302531200.
    1. Pettus B., Chalfant C., Hannun Y. Sphingolipids in inflammation: Roles and implications. Curr. Mol. Med. 2004;4:405–418. doi: 10.2174/1566524043360573.
    1. Vesper H., Schmelz E.-M., Nikolova-Karakashian M.N., Dillehay D.L., Lynch D.V., Merrill A.H. Sphingolipids in food and the emerging importance of sphingolipids to nutrition. J. Nutr. 1999;129:1239–1250.
    1. Lemonnier L.A., Dillehay D.L., Vespremi M.J., Abrams J., Brody E., Schmelz E.M. Sphingomyelin in the suppression of colon tumors: Prevention versus intervention. Arch. Biochem. Biophys. 2003;419:129–138. doi: 10.1016/j.abb.2003.08.023.
    1. Schmelz E.M., Dillehay D.L., Webb S.K., Reiter A., Adams J., Merrill A.H., Jr. Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in cf1 mice treated with 1,2-dimethylhydrazine: Implications for dietary sphingolipids and colon carcinogenesis. Cancer Res. 1996;56:4936–4941.
    1. Mazzei J.C., Zhou H., Brayfield B.P., Hontecillas R., Bassaganya-Riera J., Schmelz E.M. Suppression of intestinal inflammation and inflammation-driven colon cancer in mice by dietary sphingomyelin: Importance of peroxisome proliferator-activated receptor γ expression. J. Nutr. Biochem. 2011;22:1160–1171. doi: 10.1016/j.jnutbio.2010.09.017.
    1. Schmelz E.M. Sphingolipids in the chemoprevention of colon cancer. Front. Biosci. 2004;9:2632–2639. doi: 10.2741/1422.
    1. Babahosseini H., Roberts P.C., Schmelz E.M., Agah M. Bioactive sphingolipid metabolites modulate ovarian cancer cell structural mechanics. Integr. Biol. 2013;5:1385–1392. doi: 10.1039/c3ib40121a.
    1. Simon K.W., Tait L., Miller F., Cao C., Davy K.P., LeRoith T., Schmelz E.M. Suppression of breast xenograft growth and progression in nude mice: Implications for the use of orally administered sphingolipids as chemopreventive agents against breast cancer. Food Funct. 2010;1:90–98. doi: 10.1039/c0fo00108b.
    1. Lecomte M., Couëdelo L., Meugnier E., Plaisancié P., Létisse M., Benoit B., Gabert L., Penhoat A., Durand A., Pineau G., et al. Dietary emulsifiers from milk and soybean differently impact adiposity and inflammation in association with modulation of colonic goblet cells in high-fat fed mice. Mol. Nutr. Food Res. 2016;60:609–620. doi: 10.1002/mnfr.201500703.
    1. Noh S.K., Koo S.I. Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats. J. Nutr. 2004;134:2611–2616.
    1. Conway V., Couture P., Gauthier S., Pouliot Y., Lamarche B. Effect of buttermilk consumption on blood pressure in moderately hypercholesterolemic men and women. Nutrition. 2014;30:116–119. doi: 10.1016/j.nut.2013.07.021.
    1. Conway V., Gauthier S.F., Pouliot Y. Effect of cream pasteurization, microfiltration and enzymatic proteolysis on in vitro cholesterol-lowering activity of buttermilk solids. Dairy Sci. Technol. 2010;90:449–460. doi: 10.1051/dst/2010021.
    1. Lordan R., Zabetakis I. Ovine and caprine lipids promoting cardiovascular health in milk and its derivatives. Adv. Dairy Res. 2017;5 doi: 10.4172/2329-888X.1000176.
    1. Thorning T.K., Raben A., Tholstrup T., Soedamah-Muthu S.S., Givens I., Astrup A. Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr. Res. 2016;60:32527. doi: 10.3402/fnr.v60.32527.
    1. Markey O., Vasilopoulou D., Givens D.I., Lovegrove J.A. Dairy and cardiovascular health: Friend or foe? Nutr. Bull. 2014;39:161–171. doi: 10.1111/nbu.12086.
    1. Guo J., Astrup A., Lovegrove J.A., Gijsbers L., Givens D.I., Soedamah-Muthu S.S. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: Dose–response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2017;32:269–287. doi: 10.1007/s10654-017-0243-1.
    1. Lee K., Cho W. The consumption of dairy products is associated with reduced risks of obesity and metabolic syndrome in korean women but not in men. Nutrients. 2017;9:630. doi: 10.3390/nu9060630.
    1. Lu L., Xun P., Wan Y., He K., Cai W. Long-term association between dairy consumption and risk of childhood obesity: A systematic review and meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 2016;70:414–423. doi: 10.1038/ejcn.2015.226.
    1. Gijsbers L., Ding E.L., Malik V.S., de Goede J., Geleijnse J.M., Soedamah-Muthu S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016;103:1111–1124. doi: 10.3945/ajcn.115.123216.
    1. Alexander D.D., Bylsma L.C., Vargas A.J., Cohen S.S., Doucette A., Mohamed M., Irvin S.R., Miller P.E., Watson H., Fryzek J.P. Dairy consumption and cvd: A systematic review and meta-analysis. Br. J. Nutr. 2016;115:737–750. doi: 10.1017/S0007114515005000.
    1. De Goede J., Soedamah-Muthu S.S., Pan A., Gijsbers L., Geleijnse J.M. Dairy consumption and risk of stroke: A systematic review and updated dose–response meta-analysis of prospective cohort studies. J. Am. Heart Assoc. 2016;5:e002787. doi: 10.1161/JAHA.115.002787.
    1. Van Hoogevest P., Wendel A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur. J. Lipid Sci. Technol. 2014;116:1088–1107. doi: 10.1002/ejlt.201400219.
    1. Andersen C.J., Blesso C.N., Lee J., Barona J., Shah D., Thomas M.J., Fernandez M.L. Egg consumption modulates hdl lipid composition and increases the cholesterol-accepting capacity of serum in metabolic syndrome. Lipids. 2013;48:557–567. doi: 10.1007/s11745-013-3780-8.
    1. Noh S.K., Koo S.I. Egg sphingomyelin lowers the lymphatic absorption of cholesterol and α-tocopherol in rats. J. Nutr. 2003;133:3571–3576.
    1. Duivenvoorden I., Voshol P.J., Rensen P.C., van Duyvenvoorde W., Romijn J.A., Emeis J.J., Havekes L.M., Nieuwenhuizen W.F. Dietary sphingolipids lower plasma cholesterol and triacylglycerol and prevent liver steatosis in apoe* 3leiden mice. Am. J. Clin. Nutr. 2006;84:312–321.
    1. Chakravarthy M.V., Lodhi I.J., Yin L., Malapaka R.R.V., Xu H.E., Turk J., Semenkovich C.F. Identification of a physiologically relevant endogenous ligand for pparα in liver. Cell. 2009;138:476–488. doi: 10.1016/j.cell.2009.05.036.
    1. Ratliff J.C., Mutungi G., Puglisi M.J., Volek J.S., Fernandez M.L. Eggs modulate the inflammatory response to carbohydrate restricted diets in overweight men. Nutr. Metab. 2008;5:6. doi: 10.1186/1743-7075-5-6.
    1. Zdrojewicz Z., Herman M., Starostecka E. Hen’s egg as a source of valuable biologically active substances. Postepy Higieny I Medycyny Doswiadczalnej. 2016;70:751–759. doi: 10.5604/17322693.1208892.
    1. Sakakima Y., Hayakawa A., Nagasaka T., Nakao A. Prevention of hepatocarcinogenesis with phosphatidylcholine and menaquinone-4: In vitro and in vivo experiments. J. Hepatol. 2007;47:83–92. doi: 10.1016/j.jhep.2007.01.030.
    1. Hu C. The role of platelet-activating factor (paf) in fertilization and implantation. Reprod. Contracept. 1991;11:7–10.
    1. Tou J.C., Jaczynski J., Chen Y.-C. Krill for human consumption: Nutritional value and potential health benefits. Nutr. Rev. 2007;65:63–77. doi: 10.1111/j.1753-4887.2007.tb00283.x.
    1. Hjaltason B., Haraldsson G.G. In: Fish Oils and Lipids from Marine Sources. Gunstone F.D., editor. Woodhead Publishing Limited; Cambridge, UK: 2006.
    1. Phleger C.F., Nelson M.M., Mooney B.D., Nichols P.D. Interannual and between species comparison of the lipids, fatty acids and sterols of antarctic krill from the us amlr elephant island survey area. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2002;131:733–747. doi: 10.1016/S1096-4959(02)00021-0.
    1. Winther B., Hoem N., Berge K., Reubsaet L. Elucidation of phosphatidylcholine composition in krill oil extracted from euphausia superba. Lipids. 2011;46:25–36. doi: 10.1007/s11745-010-3472-6.
    1. Henna Lu F.S., Nielsen N.S., Timm-Heinrich M., Jacobsen C. Oxidative stability of marine phospholipids in the liposomal form and their applications. Lipids. 2011;46:3–23. doi: 10.1007/s11745-010-3496-y.
    1. Frankel E.N. Lipid Oxidation. 1st ed. Oily Press; High Wycombe, UK: 1998.
    1. Kamal-Eldin A., Yanishlieva N.V. N-3 fatty acids for human nutrition: Stability considerations. Eur. J. Lipid Sci. Technol. 2002;104:825–836. doi: 10.1002/1438-9312(200212)104:12<825::AID-EJLT825>;2-N.
    1. Tanaka T., Tokumura A., Tsukatani H. Platelet-activating factor (paf)-like phospholipids formed during peroxidation of phosphatidylcholines from different foodstuffs. Biosci. Biotechnol. Biochem. 1995;59:1389–1393. doi: 10.1271/bbb.59.1389.
    1. Maligan J.M., Estiasih T., Kusnadi J. Structured phospholipids from commercial soybean lecithin containing omega-3 fatty acids reduces atherosclerosis risk in male sprague dawley rats which fed with an atherogenic diet. World Acad. Sci. Eng. Technol. 2012;69:552–558.
    1. Song J.-H., Inoue Y., Miyazawa T. Oxidative stability of docosahexaenoic acid-containing oils in the form of phospholipids, triacylglycerols, and ethyl esters. Biosci. Biotechnol. Biochem. 1997;61:2085–2088. doi: 10.1271/bbb.61.2085.
    1. Lu F.S.H., Nielsen N.S., Baron C.P., Jacobsen C. Marine phospholipids: The current understanding of their oxidation mechanisms and potential uses for food fortification. Crit. Rev. Food Sci. Nutr. 2017;57:2057–2070. doi: 10.1080/10408398.2014.925422.
    1. Yanishlieva N.V., Marinova E.M. Stabilisation of edible oils with natural antioxidants. Eur. J. Lipid Sci. Technol. 2001;103:752–767. doi: 10.1002/1438-9312(200111)103:11<752::AID-EJLT752>;2-0.
    1. Lyberg A.-M., Fasoli E., Adlercreutz P. Monitoring the oxidation of docosahexaenoic acid in lipids. Lipids. 2005;40:969. doi: 10.1007/s11745-005-1458-1.
    1. Janssen C.I.F., Zerbi V., Mutsaers M.P.C., de Jong B.S.W., Wiesmann M., Arnoldussen I.A.C., Geenen B., Heerschap A., Muskiet F.A.J., Jouni Z.E., et al. Impact of dietary n-3 polyunsaturated fatty acids on cognition, motor skills and hippocampal neurogenesis in developing c57bl/6j mice. J. Nutr. Biochem. 2015;26:24–35. doi: 10.1016/j.jnutbio.2014.08.002.
    1. Schuchardt J.P., Hahn A. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Other Lipid Mediat. 2013;89:1–8. doi: 10.1016/j.plefa.2013.03.010.
    1. Runau F., Arshad A., Isherwood J., Norris L., Howells L., Metcalfe M., Dennison A. Potential for proteomic approaches in determining efficacy biomarkers following administration of fish oils rich in omega-3 fatty acids. Nutr. Clin. Pract. 2015;30:363–370. doi: 10.1177/0884533614567337.
    1. Wang X., Hjorth E., Vedin I., Eriksdotter M., Freund-Levi Y., Wahlund L.-O., Cederholm T., Palmblad J., Schultzberg M. Effects of n-3 fa supplementation on the release of proresolving lipid mediators by blood mononuclear cells: The omegad study. J. Lipid Res. 2015;56:674–681. doi: 10.1194/jlr.P055418.
    1. Hung M.-C., Shibasaki K., Yoshida R., Sato M., Imaizumi K. Learning behaviour and cerebral protein kinase c, antioxidant status, lipid composition in senescence-accelerated mouse: Influence of a phosphatidylcholine–vitamin b12 diet. Br. J. Nutr. 2007;86:163–171. doi: 10.1079/BJN2001391.
    1. Torres G.J., Durán A.S. Phospholipids: Properties and health effects. Nutr. Hosp. 2014;31:76–83.
    1. Jung Y.Y., Nam Y., Park Y.S., Lee H.S., Hong S.A., Kim B.K., Park E.S., Chung Y.H., Jeong J.H. Protective effect of phosphatidylcholine on lipopolysaccharide-induced acute inflammation in multiple organ injury. Korean J. Physiol. Pharmacol. 2013;17:209–216. doi: 10.4196/kjpp.2013.17.3.209.
    1. Vicenova M., Nechvatalova K., Chlebova K., Kucerova Z., Leva L., Stepanova H., Faldyna M. Evaluation of in vitro and in vivo anti-inflammatory activity of biologically active phospholipids with anti-neoplastic potential in porcine model. BMC Complement. Altern. Med. 2014;14:339. doi: 10.1186/1472-6882-14-339.
    1. Moncada S., Higgs E.A. Arachidonate metabolism in blood cells and the vessel wall. Baillieres Clin. Haematol. 1986;15:273–292.
    1. Mori T.A., Beilin L.J., Burke V., Morris J., Ritchie J. Interactions between dietary fat, fish, and fish oils and their effects on platelet function in men at risk of cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 1997;17:279–286. doi: 10.1161/01.ATV.17.2.279.
    1. Mori T.A., Vandongen R., Mahanian F., Douglas A. Plasma lipid levels and platelet and neutrophil function in patients with vascular disease following fish oil and olive oil supplementation. Metabolism. 1992;41:1059–1067. doi: 10.1016/0026-0495(92)90286-J.
    1. Gioxari A., Kaliora A.C., Marantidou F., Panagiotakos D.P. Intake of ω-3 polyunsaturated fatty acids in patients with rheumatoid arthritis: A systematic review and meta-analysis. Nutrition. 2017 doi: 10.1016/j.nut.2017.06.023.
    1. Lewkowicz N., Lewkowicz P., Kurnatowska A., Tchórzewski H. Biological action and clinical application of shark liver oil. Polski Merkuriusz Lekarski. 2006;20:598–601.
    1. Schaefer M.B., Ott J., Mohr A., Bi M.H., Grosz A., Weissmann N., Ishii S., Grimminger F., Seeger W., Mayer K. Immunomodulation by n-3- versus n-6-rich lipid emulsions in murine acute lung injury—Role of platelet-activating factor receptor. Crit. Care Med. 2007;35:544–554. doi: 10.1097/01.CCM.0000253811.74112.B6.
    1. Misso N.L.A., Thompson P.J. Fish oil supplementation inhibits platelet aggregation and ATP release induced by platelet-activating factor and other agonists. Platelets. 1995;6:275–282. doi: 10.3109/09537109509023567.
    1. Woodman R.J., Mori T.A., Burke V., Puddey I.B., Barden A., Watts G.F., Beilin L.J. Effects of purified eicosapentaenoic acid and docosahexaenoic acid on platelet, fibrinolytic and vascular function in hypertensive type 2 diabetic patients. Atherosclerosis. 2003;166:85–93. doi: 10.1016/S0021-9150(02)00307-6.
    1. Sperling R.I., Robin J.L., Kylander K.A., Lee T.H., Lewis R.A., Austen K.F. The effects of n-3 polyunsaturated fatty acids on the generation of platelet-activating factor-acether by human monocytes. J. Immunol. 1987;139:4186–4191.
    1. Nasopoulou C., Karantonis H.C., Andriotis M., Demopoulos C.A., Zabetakis I. Antibacterial and anti-paf activity of lipid extracts from sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) Food Chem. 2008;111:433–438. doi: 10.1016/j.foodchem.2008.04.011.
    1. Nasopoulou C., Stamatakis G., Demopoulos C.A., Zabetakis I. Effects of olive pomace and olive pomace oil on growth performance, fatty acid composition and cardio protective properties of gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) Food Chem. 2011;129:1108–1113. doi: 10.1016/j.foodchem.2011.05.086.
    1. Galanos D.S., Kapoulas V.M. Isolation of polar lipids from triglyceride mixtures. J. Lipid Res. 1962;3:134–136.
    1. Nasopoulou C., Gogaki V., Stamatakis G., Papaharisis L., Demopoulos C., Zabetakis I. Evaluation of the in vitro anti-atherogenic properties of lipid fractions of olive pomace, olive pomace enriched fish feed and gilthead sea bream (Sparus aurata) fed with olive pomace enriched fish feed. Mar. Drugs. 2013;11:3676–3688. doi: 10.3390/md11103676.

Source: PubMed

3
Subscribe