Volumetric and End-Tidal Capnography for the Detection of Cardiac Output Changes in Mechanically Ventilated Patients Early after Open Heart Surgery

Ingrid Elise Hoff, Lars Øivind Høiseth, Knut Arvid Kirkebøen, Svein Aslak Landsverk, Ingrid Elise Hoff, Lars Øivind Høiseth, Knut Arvid Kirkebøen, Svein Aslak Landsverk

Abstract

Background: Exhaled carbon dioxide (CO2) reflects cardiac output (CO) provided stable ventilation and metabolism. Detecting CO changes may help distinguish hypovolemia or cardiac dysfunction from other causes of haemodynamic instability. We investigated whether CO2 measured as end-tidal concentration (EtCO2) and eliminated volume per breath (VtCO2) reflect sudden changes in cardiac output (CO).

Methods: We measured changes in CO, VtCO2, and EtCO2 during right ventricular pacing and passive leg raise in 33 ventilated patients after open heart surgery. CO was measured with oesophageal Doppler.

Results: During right ventricular pacing, CO was reduced by 21% (CI 18-24; p < 0.001), VtCO2 by 11% (CI 7.9-13; p < 0.001), and EtCO2 by 4.9% (CI 3.6-6.1; p < 0.001). During passive leg raise, CO increased by 21% (CI 17-24; p < 0.001), VtCO2 by 10% (CI 7.8-12; p < 0.001), and EtCO2 by 4.2% (CI 3.2-5.1; p < 0.001). Changes in VtCO2 were significantly larger than changes in EtCO2 (ventricular pacing: 11% vs. 4.9% (p < 0.001); passive leg raise: 10% vs. 4.2% (p < 0.001)). Relative changes in CO correlated with changes in VtCO2 (ρ=0.53; p=0.002) and EtCO2 (ρ=0.47; p=0.006) only during reductions in CO. When dichotomising CO changes at 15%, only EtCO2 detected a CO change as judged by area under the receiver operating characteristic curve.

Conclusion: VtCO2 and EtCO2 reflected reductions in cardiac output, although correlations were modest. The changes in VtCO2 were larger than the changes in EtCO2, but only EtCO2 detected CO reduction as judged by receiver operating characteristic curves. The predictive ability of EtCO2 in this setting was fair. This trial is registered with NCT02070861.

Figures

Figure 1
Figure 1
Study protocol. Sixty-second baseline measurements before 30 s of RVP and 60 s of PLR. The sequence of the interventions varied, minimum 5 min apart.
Figure 2
Figure 2
Flow chart inclusion.
Figure 3
Figure 3
Lineplot. Individual (grey) and mean (black) values with 95% confidence intervals for CO, VtCO2, and EtCO2 before, during, and after interventions. CO = cardiac output; EtCO2 = end-tidal carbon dioxide; VtCO2 = exhaled carbon dioxide per tidal volume; BL = baseline; RVP = right ventricular pacing; PLR = passive leg raise.
Figure 4
Figure 4
Scatterplot EtCO2. Correlation between mean relative changes in CO and EtCO2 from BL to RVP and PLR, respectively. Least significant changes for CO and EtCO2 are indicated with shadows. CO = cardiac output; EtCO2 = end-tidal carbon dioxide; VtCO2 = exhaled carbon dioxide per tidal volume; BL = baseline; RVP = right ventricular pacing; PLR = passive leg raise; ρ = Spearman's rho with confidence intervals.
Figure 5
Figure 5
Correlation between mean relative changes in CO and VtCO2 from BL to RVP and PLR, respectively. Least significant changes for CO and VtCO2 are indicated with shadows. Dots are for RVP; circles are for PLR. CO = cardiac output; EtCO2 = end-tidal carbon dioxide; VtCO2 = exhaled carbon dioxide per tidal volume; BL = baseline; RVP = right ventricular pacing; PLR = passive leg raise; ρ = Spearman's rho with confidence intervals.
Figure 6
Figure 6
ROC-plot. Receiver operating characteristic plots of VtCO2 and EtCO2 during right ventricular pacing and passive leg raise, respectively. EtCO2 = end-tidal carbon dioxide; VtCO2 = exhaled carbon dioxide per tidal volume; AUC = area under the curve.

References

    1. Pearse R. M., Harrison D. A., MacDonald N., et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery. JAMA. 2014;311(21):2181–2190. doi: 10.1001/jama.2014.5305.
    1. Cecconi M., De Backer D., Antonelli M., et al. Consensus on circulatory shock and hemodynamic monitoring: task force of the european society of intensive care medicine. Intensive Care Medicine. 2014;40(12):1795–1815. doi: 10.1007/s00134-014-3525-z.
    1. Siobal M. S. Monitoring exhaled carbon dioxide. Respiratory Care. 2016;61(10):1397–1416. doi: 10.4187/respcare.04919.
    1. Suarez-Sipmann F., Bohm S. H., Tusman G. Volumetric capnography. Current Opinion in Critical Care. 2014;20(3):333–339. doi: 10.1097/mcc.0000000000000095.
    1. Walsh B. K., Crotwell D. N., Restrepo R. D. Capnography/Capnometry during mechanical ventilation: 2011. Respiratory Care. 2011;56(4):503–509. doi: 10.4187/respcare.01175.
    1. Nassar B. S., Schmidt G. A. Capnography during critical illness. Chest. 2016;149(2):576–585. doi: 10.1378/chest.15-1369.
    1. Verscheure S., Massion P. B., Verschuren F., Damas P., Magder S. Volumetric capnography: lessons from the past and current clinical applications. Critical Care. 2016;20(1):p. 184. doi: 10.1186/s13054-016-1377-3.
    1. Hazinski M. F., Nolan J. P., Billi J. E., et al. Part 1: executive summary: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2010;122(16):S250–S275. doi: 10.1161/circulationaha.110.970897.
    1. Hartmann S. M., Farris R. W. D., Di Gennaro J. L., Roberts J. S. Systematic review and meta-analysis of end-tidal carbon dioxide values associated with return of spontaneous circulation during cardiopulmonary resuscitation. Journal of Intensive Care Medicine. 2015;30(7):426–435. doi: 10.1177/0885066614530839.
    1. Monge García M. I., Gil Cano A., Gracia Romero M., Monterroso Pintado R., Pérez Madueño V., Díaz Monrové J. C. Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Annals of Intensive Care. 2012;2(1):p. 9. doi: 10.1186/2110-5820-2-9.
    1. Monnet X., Bataille A., Magalhaes E., et al. End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Medicine. 2013;39(1):93–100. doi: 10.1007/s00134-012-2693-y.
    1. Jacquet-Lagreze M., Baudin F., David J. S., et al. End-tidal carbon dioxide variation after a 100- and a 500-ml fluid challenge to assess fluid responsiveness. Annals of Intensive Care. 2016;6(1):p. 37. doi: 10.1186/s13613-016-0141-9.
    1. Young A., Marik P. E., Sibole S., Grooms D., Levitov A. Changes in end-tidal carbon dioxide and volumetric carbon dioxide as predictors of volume responsiveness in hemodynamically unstable patients. Journal of Cardiothoracic and Vascular Anesthesia. 2013;27(4):681–684. doi: 10.1053/j.jvca.2012.09.025.
    1. Tusman G., Groisman I., Maidana G. A., et al. The sensitivity and specificity of pulmonary carbon dioxide elimination for noninvasive assessment of fluid responsiveness. Anesthesia & Analgesia. 2016;122(5):1404–1411. doi: 10.1213/ane.0000000000001047.
    1. Isserles S. A., Breen P. H. Can changes in end-tidal PCO2 measure changes in cardiac output? Anesthesia & Analgesia. 1991;73(6):808–814. doi: 10.1213/00000539-199112000-00023.
    1. Klein M., Minkovich L., Machina M., et al. Non-invasive measurement of cardiac output using an iterative, respiration-based method. British Journal of Anaesthesia. 2015;114(3):406–413. doi: 10.1093/bja/aeu377.
    1. Shibutani K., Muraoka M., Shirasaki S., Kubal K., Sanchala V. T., Gupte P. Do changes in end-tidal PCO2 quantitatively reflect changes in cardiac output? Anesthesia & Analgesia. 1994;79(5):829–833. doi: 10.1213/00000539-199411000-00002.
    1. Peyton P. J. Continuous minimally invasive peri-operative monitoring of cardiac output by pulmonary capnotracking: comparison with thermodilution and transesophageal echocardiography. Journal of Clinical Monitoring and Computing. 2012;26(2):121–132. doi: 10.1007/s10877-012-9342-4.
    1. Hamby R. I., Aintablian A. Preload reduction with right ventricular pacing: effects on left ventricular hemodynamics and contractile pattern. Clinical Cardiology. 1980;3(3):169–177. doi: 10.1002/clc.4960030303.
    1. Saito M., Kaye G., Negishi K., et al. Dyssynchrony, contraction efficiency and regional function with apical and non-apical RV pacing. Heart. 2015;101(8):600–608. doi: 10.1136/heartjnl-2014-306990.
    1. Møller-Sørensen H., Cordtz J., Østergaard M., Nilsson J. C., Hansen K. L. Transesophageal Doppler reliably tracks changes in cardiac output in comparison with intermittent pulmonary artery thermodilution in cardiac surgery patients. Journal of Clinical Monitoring and Computing. 2017;31(1):135–142. doi: 10.1007/s10877-015-9806-4.
    1. Kodali B. S. Capnography outside the operating rooms. Anesthesiology. 2013;118(1):192–201. doi: 10.1097/aln.0b013e318278c8b6.
    1. Monnet X., Teboul J.-L. Passive leg raising: five rules, not a drop of fluid! Critical Care. 2015;19(1):p. 18. doi: 10.1186/s13054-014-0708-5.
    1. Bland J. M., Altman D. G. Measuring agreement in method comparison studies. Statistical Methods in Medical Research. 1999;8(2):135–160. doi: 10.1191/096228099673819272.
    1. Cecconi M., Rhodes A., Poloniecki J., Della Rocca G., Grounds R. M. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies—with specific reference to the measurement of cardiac output. Critical Care. 2009;13(1):p. 201. doi: 10.1186/cc7129.
    1. Moher D., Hopewell S., Schulz K. F., et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340(1):p. c869. doi: 10.1136/bmj.c869.
    1. Hoiseth L. O., Hagemo J. S. Predicting fluid responsiveness in whom? A simulated example of patient spectrum influencing the receiver operating characteristics curve. Journal of Clinical Monitoring and Computing. 2018;32(2):215–219. doi: 10.1007/s10877-017-0019-x.
    1. Saugel B., Flick M., Bendjelid K., Critchley L. A. H., Vistisen S. T., Scheeren T. W. L. Journal of clinical monitoring and computing end of year summary 2018: hemodynamic monitoring and management. Journal of Clinical Monitoring and Computing. 2019;33(2):211–222. doi: 10.1007/s10877-019-00297-w.
    1. Lakhal K., Nay M. A., Kamel T., et al. Change in end-tidal carbon dioxide outperforms other surrogates for change in cardiac output during fluid challenge. British Journal of Anaesthesia. 2017;118(3):355–362. doi: 10.1093/bja/aew478.
    1. Marik P. E., Cavallazzi R., Vasu T., Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Critical Care Medicine. 2009;37(9):2642–2647. doi: 10.1097/ccm.0b013e3181a590da.
    1. Pinsky M. R. Heart lung interactions during mechanical ventilation. Current Opinion in Critical Care. 2012;18(3):256–260. doi: 10.1097/mcc.0b013e3283532b73.
    1. Ornato J. P., Garnett A. R., Glauser F. L. Relationship between cardiac output and the end-trial carbon dioxide tension. Annals of Emergency Medicine. 1990;19(10):1104–1106. doi: 10.1016/s0196-0644(05)81512-4.
    1. Weil M. H., Bisera J., Trevino R. P., Rackow E. C. Cardiac output and end-tidal carbon dioxide. Critical Care Medicine. 1985;13(11):907–909. doi: 10.1097/00003246-198511000-00011.
    1. Høiseth L. Ø, Hisdal J, Hoff I. E, Hagen O. A, Landsverk S. A, Kirkebøen K. A. Tissue oxygen saturation and finger perfusion index in central hypovolemia: influence of pain. Critical Care Medicine. 2015;43(4):747–756. doi: 10.1097/CCM.0000000000000766.
    1. Berton C., Cholley B. Equipment review: new techniques for cardiac output measurement—oesophageal Doppler, Fick principle using carbon dioxide, and pulse contour analysis. Critical Care. 2002;6(3):216–221. doi: 10.1186/cc1492.
    1. Monnet X., Chemla D., Osman D., et al. Measuring aortic diameter improves accuracy of esophageal Doppler in assessing fluid responsiveness. Critical Care Medicine. 2007;35(2):477–482. doi: 10.1097/01.ccm.0000254725.35802.17.
    1. Tusman G., Suarez-Sipmann F., Paez G., Alvarez J., Bohm S. H. States of low pulmonary blood flow can be detected non-invasively at the bedside measuring alveolar dead space. Journal of Clinical Monitoring and Computing. 2012;26(3):183–190. doi: 10.1007/s10877-012-9358-9.
    1. Peyton P. Pulmonary carbon dioxide elimination for cardiac output monitoring in peri-operative and critical care patients: history and current status. Journal of Healthcare Engineering. 2013;4(2):203–222. doi: 10.1260/2040-2295.4.2.203.
    1. Alian A. A., Shelley K. H. Respiratory physiology and the impact of different modes of ventilation on the photoplethysmographic waveform. Sensors. 2012;12(2):2236–2254. doi: 10.3390/s120202236.

Source: PubMed

3
Subscribe