Daratumumab monotherapy for patients with relapsed or refractory natural killer/T-cell lymphoma, nasal type: an open-label, single-arm, multicenter, phase 2 study

Huiqiang Huang, Jun Zhu, Ming Yao, Tae Min Kim, Dok Hyun Yoon, Seok-Goo Cho, Hyeon Seok Eom, Soon Thye Lim, Su-Peng Yeh, Yuqin Song, Yok Lam Kwong, Jin Seok Kim, Jie Jin, Yuankai Shi, HyeJin Kim, Min Qing, Tianyuan Zhou, Grace Gao, Zongqi Dong, Ming Qi, Won Seog Kim, Huiqiang Huang, Jun Zhu, Ming Yao, Tae Min Kim, Dok Hyun Yoon, Seok-Goo Cho, Hyeon Seok Eom, Soon Thye Lim, Su-Peng Yeh, Yuqin Song, Yok Lam Kwong, Jin Seok Kim, Jie Jin, Yuankai Shi, HyeJin Kim, Min Qing, Tianyuan Zhou, Grace Gao, Zongqi Dong, Ming Qi, Won Seog Kim

Abstract

Background: Natural killer/T-cell lymphoma (NKTCL) is a disease with limited treatment options and poor outcomes. Daratumumab monotherapy demonstrated clinical activity in a single-patient case report. We present data from the primary analysis of a phase 2 study of daratumumab monotherapy in relapsed or refractory (R/R) NKTCL.

Methods: This phase 2 study with Simon's two-stage design evaluated daratumumab in patients with histologically confirmed extranodal NKTCL, nasal type, per WHO classification that was refractory to or relapsed after ≥ 1 line of chemotherapy, who were not candidates for other treatment modalities. All patients received daratumumab 16 mg/kg intravenously once weekly for Cycles 1 and 2, every other week for Cycles 3 through 6, and every 4 weeks thereafter until progression or unacceptable toxicity; all cycles were 28 days. The primary end point was objective response rate (ORR) based on blinded independent central review per Revised Criteria for Response Assessment of Hodgkin and non-Hodgkin Lymphoma (Lugano classification).

Results: In total, 32 Asian patients received daratumumab. The ORR was 25.0% (95% confidence interval [CI] 11.5-43.4); all 8 responders had a partial response; and the median duration of response was 55.0 days (95% CI 29-339). At 10.2 months of median follow-up, median progression-free survival (PFS) was 53.0 days (95% CI 43-106); the 4-month PFS rate was 13.0%. Median overall survival (OS) was 141.0 days (95% CI 94-438); the 6-month OS rate was 42.9%. Nineteen (59.4%) patients had grade 3/4 treatment-emergent adverse events (TEAEs); the most common was thrombocytopenia (25.0%; n = 8). TEAEs leading to death occurred in 4 patients (death, respiratory failure, septic shock, and pneumonia); all were unrelated to daratumumab.

Conclusions: In patients with R/R NKTCL, daratumumab monotherapy was well tolerated with no new safety concerns and achieved an ORR of 25.0%. However, no patients achieved complete response, and duration of response was short. Trial registration ClinicalTrials.gov, NCT02927925. Registered 7 October 2016.

Keywords: CD38; Daratumumab; NK/T-cell lymphoma.

Conflict of interest statement

TMK reports consulting for AstraZeneca, Novartis, Takeda, Sanofi, and Bayer, and research funding from AstraZeneca; DHY reports research funding from Janssen; HK, TZ, GG, and ZD are employees of Janssen; MQing and MQi are employees of Janssen and own equity in Janssen; WSK reports research funding from Roche, Kyowa Kirin, Novartis, Janssen, Mundipharma, Celltrion, and Donga; HH, JZ, MY, S-GC, HSE, STL, S-PY, YSong, YLK, JSK, JJ, and YShi have no conflicts to disclose.

Figures

Fig. 1
Fig. 1
Swim lane plot for duration of response based on central review in daratumumab-treated responders. Responses are shown (PR). Five patients had progressive disease (PD) and 2 patients discontinued treatment based on investigator’s assessment of PD (*) and no further assessment of response occurred due to withdrawal from study. The arrow indicates ongoing treatment at clinical cutoff date (1 patient). PD, progressive disease; PR, partial response
Fig. 2
Fig. 2
Summary of plasma EBV-DNA levels over time. Median plasma EBV-DNA loads (kIU/L) over time are shown for responders and nonresponders in the pharmacodynamic analysis population. Responses were based on central review. Nonevaluable patients were considered nonresponders. C, Cycle; D, Day; EBV, Epstein–Barr virus; EOT, end of treatment
Fig. 3
Fig. 3
a Progression-free survival and b overall survival in patients with relapsed or refractory natural killer/T-cell lymphoma treated with daratumumab. Kaplan–Meier curves are shown for the overall population (all-treated patients; n = 32) and for responders (n = 8) and nonresponders (n = 24). Responses were based on central review. Nonevaluable patients were considered nonresponders

References

    1. Tse E, Kwong YL. The diagnosis and management of NK/T-cell lymphomas. J Hematol Oncol. 2017;10:85. doi: 10.1186/s13045-017-0452-9.
    1. Haverkos BM, Pan Z, Gru AA, Freud AG, Rabinovitch R, Xu-Welliver M, et al. Extranodal NK/T cell lymphoma, nasal type (ENKTL-NT): an update on epidemiology, clinical presentation, and natural history in North American and European cases. Curr Hematol Malig Rep. 2016;11:514–527. doi: 10.1007/s11899-016-0355-9.
    1. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: T-cell Lymphomas, Version 1.2020- January 6, 2020.2020.
    1. Kwong YL, Chan TSY, Tan D, Kim SJ, Poon LM, Mow B, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood. 2017;129:2437–2442. doi: 10.1182/blood-2016-12-756841.
    1. Chan TSY, Li J, Loong F, Khong PL, Tse E, Kwong YL. PD1 blockade with low-dose nivolumab in NK/T cell lymphoma failing L-asparaginase: efficacy and safety. Ann Hematol. 2018;97:193–196. doi: 10.1007/s00277-017-3127-2.
    1. Au WY, Weisenburger DD, Intragumtornchai T, Nakamura S, Kim WS, Sng I, et al. Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: a study of 136 cases from the International Peripheral T-Cell Lymphoma Project. Blood. 2009;113:3931–3937. doi: 10.1182/blood-2008-10-185256.
    1. Wang L, Wang ZH, Chen XQ, Li YJ, Wang KF, Xia YF, et al. First-line combination of gemcitabine, oxaliplatin, and L-asparaginase (GELOX) followed by involved-field radiation therapy for patients with stage IE/IIE extranodal natural killer/T-cell lymphoma. Cancer. 2013;119:348–355. doi: 10.1002/cncr.27752.
    1. Ahn HK, Kim SJ, Hwang DW, Ko YH, Tang T, Lim ST, et al. Gemcitabine alone and/or containing chemotherapy is efficient in refractory or relapsed NK/T-cell lymphoma. Invest New Drugs. 2013;31:469–472. doi: 10.1007/s10637-012-9889-4.
    1. de Weers M, Tai YT, van der Veer MS, Bakker JM, Vink T, Jacobs DC, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186:1840–1848. doi: 10.4049/jimmunol.1003032.
    1. Lammerts van Bueren J, Jakobs D, Kaldenhoven N, Roza M, Hiddingh S, Meesters J, et al. Direct in vitro comparison of daratumumab with surrogate analogs of CD38 antibodies MOR03087, SAR650984 and Ab79. Blood. 2014;124:3474. doi: 10.1182/blood.V124.21.3474.3474.
    1. Overdijk MB, Verploegen S, Bogels M, van Egmond M, Lammerts van Bueren JJ, Mutis T, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015;7:311–321. doi: 10.1080/19420862.2015.1007813.
    1. Overdijk MB, Jansen JH, Nederend M, Lammerts van Bueren JJ, Groen RW, Parren PW, et al. The therapeutic CD38 monoclonal antibody daratumumab induces programmed cell death via Fcgamma receptor-mediated cross-linking. J Immunol. 2016;197:807–813. doi: 10.4049/jimmunol.1501351.
    1. Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, et al. Daratumumab depletes CD38+ immune-regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016;128:384–394. doi: 10.1182/blood-2015-12-687749.
    1. Chiu C, Casneuf T, Axel A, Lysaght A, Bald J, Khokhar NZ, et al. Daratumumab in combination with lenalidomide plus dexamethasone induces clonality increase and T-cell expansion: results from a phase 3 randomized study (POLLUX) Blood. 2016;128:4531. doi: 10.1182/blood.V128.22.4531.4531.
    1. Casneuf T, Adams HC 3rd, van de Donk N, Abraham Y, Bald J, Vanhoof G, et al. Deep immune profiling of patients treated with lenalidomide and dexamethasone with or without daratumumab. Leukemia. 2020. 10.1038/s41375-020-0855-4.
    1. DARZALEX® (daratumumab) [package insert]. Horsham, PA: Janssen Biotech, Inc.; April 2020.
    1. European Medicines Agency. DARZALEX 20 mg/mL concentrate for solution for infusion Summary of Product Characteristics. 2016. Available from: . Accessed 27 Aug 2020.
    1. Wang L, Wang H, Li PF, Lu Y, Xia ZJ, Huang HQ, et al. CD38 expression predicts poor prognosis and might be a potential therapy target in extranodal NK/T cell lymphoma, nasal type. Ann Hematol. 2015;94:1381–1388. doi: 10.1007/s00277-015-2359-2.
    1. Hari P, Raj RV, Olteanu H. Targeting CD38 in refractory extranodal natural killer cell-t-cell lymphoma. N Engl J Med. 2016;375:1501–1502. doi: 10.1056/NEJMc1605684.
    1. Kim W, Eom H, Yeh S, Cho S. Daratumumab monotherapy for patients with relapsed or refractory (R/R) natural killer/t-cell lymphoma (NKTCL), nasal type: an open-label, single-arm, multicenter phase 2 study. Poster presented at: 60th Annual Meeting of the American Society of Hematology; December 1–4, 2018; San Diego, CA. Abstract 1617.
    1. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–2390. doi: 10.1182/blood-2016-01-643569.
    1. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–3068. doi: 10.1200/JCO.2013.54.8800.
    1. Cole S, Walsh A, Yin X, Wechalekar MD, Smith MD, Proudman SM, et al. Integrative analysis reveals CD38 as a therapeutic target for plasma cell-rich pre-disease and established rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther. 2018;20:85. doi: 10.1186/s13075-018-1578-z.
    1. US Department of Health and Human Services, National Institutes of Health, National Cancer Institute. Common terminology criteria for adverse events (CTCAE) : Version 4.03. 2010.
    1. Casneuf T, Xu XS, Adams HC, Axel AE, Chiu C, Khan I, et al. Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed refractory multiple myeloma. Blood Adv. 2017;1:2105–2114. doi: 10.1182/bloodadvances.2017006866.
    1. Jaccard A, Gachard N, Marin B, Rogez S, Audrain M, Suarez F, et al. Efficacy of L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study. Blood. 2011;117:1834–1839. doi: 10.1182/blood-2010-09-307454.
    1. Yamaguchi M, Kwong YL, Kim WS, Maeda Y, Hashimoto C, Suh C, et al. Phase II study of SMILE chemotherapy for newly diagnosed stage IV, relapsed, or refractory extranodal natural killer (NK)/T-cell lymphoma, nasal type: the NK-Cell Tumor Study Group study. J Clin Oncol. 2011;29:4410–4416. doi: 10.1200/JCO.2011.35.6287.
    1. Ding H, Chang J, Liu LG, Hu D, Zhang WH, Yan Y, et al. High-dose methotrexate, etoposide, dexamethasone and pegaspargase (MEDA) combination chemotherapy is effective for advanced and relapsed/refractory extranodal natural killer/T cell lymphoma: a retrospective study. Int J Hematol. 2015;102:181–187. doi: 10.1007/s12185-015-1809-x.
    1. Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373:1207–1219. doi: 10.1056/NEJMoa1506348.
    1. Lonial S, Weiss BM, Usmani S, Singhal S, Chari A, Bahlis N, et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet. 2016;387:1551–1560. doi: 10.1016/S0140-6736(15)01120-4.
    1. Usmani SZ, Nahi H, Plesner T, Weiss BM, Bahlis NJ, Belch A, et al. Daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma: final results from the phase 2 GEN501 and SIRIUS trials. Lancet Haematol. 2020;7:e447–e455. doi: 10.1016/S2352-3026(20)30081-8.
    1. Xu XS, Yan X, Puchalski T, Lonial S, Lokhorst HM, Voorhees PM, et al. Clinical implications of complex pharmacokinetics for daratumumab dose regimen in patients with relapsed/refractory multiple myeloma. Clin Pharmacol Ther. 2017;101:721–724. doi: 10.1002/cpt.577.

Source: PubMed

3
Subscribe