Closing the loop of deep brain stimulation

Romain Carron, Antoine Chaillet, Anton Filipchuk, William Pasillas-Lépine, Constance Hammond, Romain Carron, Antoine Chaillet, Anton Filipchuk, William Pasillas-Lépine, Constance Hammond

Abstract

High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.

Keywords: DBS; antidromic; closed loop; mechanisms; open loop.

Figures

Figure 1
Figure 1
Chronaxy. Deep-brain high-frequency stimulation is applied through an extracellular stimulating electrode. Stimulation usually consists of 60–400 μs pulses applied at a frequency of 100–130 Hz. It activates one or several neuronal elements close to the stimulating electrode: somato-dendritic trees, axons, axon terminals. This depends on stimulation parameters, since each of these elements has a specific chronaxy (Ranck, 1975) which determines whether they are activated by a given stimulation. A single, short-duration, extracellular stimulating pulse preferentially activates axons The link between the intensity of stimulation (Y axis) and the minimal duration of this stimulation (pulse width, X axis) needed to activate a given element (muscle fiber or neuron, soma or axon of a neuron) is hyperbolic and described by the Weiss law: I = Rh (Cr/t +1). When the current intensity of a pulse is decreased, its duration (pulse width) must be increased to produce constant effects i.e., activate the given neuronal element. The asymptote to the X axis defines the rheobase (Rh). It corresponds to the minimal current intensity needed to activate an element (muscular or neuronal). If applied at an intensity lower than rheobase, the stimulus will never activate a given element, whatever its duration (t). The minimum duration required for a constant electric current of twice the rheobase to excite tissue is the Chronaxy (Cr). When I = 2Rh, t = Cr The concepts of “chronaxie” and “rheobase” were introduced in 1909 by the French physiologist L. Lapicque. The root word “rheo” means current and the root word “chron” means time. The chronaxy is used to quantify the excitability of an element. The element is more excitable when its chronaxy is short. Chronaxies of the different elements of the nervous system differ by a factor of 5 to 300. Large myelinated axons of the central nervous system have a chronaxy of 30–300 μs and around 500 μs for non-myelinated axons, whereas that of somas and dendrites is around 1–10 ms (Ranck, 1975). In the cat visual cortex, Nowak and Bullier (1998) found similar results with a chronaxy of around 270 μs for axons of the subcortical white matter and of 15 ms for somas in the cortex. Therefore, a stimulating pulse of 60–400 μs duration preferentially activates axons. Larger axons have a lower threshold of activation because the intracellular resistance to longitudinal ionic flux is low as a result of the higher percentage of ions that carry the current per length unit. Therefore, for a given current applied, the large axons are those most easily depolarized.
Figure 2
Figure 2
The two hypotheses on the effect of STN HFS-evoked orthodromic spikes on the activity of substantia nigra and pallidal neurons. (A) Schematic illustration of the experimental design showing the stimulation and recording sites. (B) HFS-evoked orthodromic spikes in STN axons evoke excitatory (left) and inhibitory (right) responses in SNr neurons recorded in cell-attached (c-a) or whole-cell (w-c) configuration in voltage (top) or current (bottom) clamp mode. Scale bars: 100 pA top, 5 mV bottom, 400 ms. Adapted from Bosch et al. (2011). (C–E) HFS-evoked orthodromic spikes in STN axons evoke low amplitude EPSCs in SNr (C), SNc (D), and GPe (E) neurons. Bottom traces in (C) and (E) are close ups to the top traces at the beginning (C) left and at the end (C) right, (E) of the stimulation. Scale bars are 50 pA, 200 and 20 ms in (C), 50 pA and 5 ms in (D) and 50 pA, 200 and 20 ms in (E). (C) from Ammari and Hammond (personal communication), (D) adapted from Zheng et al. (2011) and (E) adapted from Ammari et al. (2011). (F) Schematic illustration of the possible mechanisms underlying HFS-induced depression of synaptic transmission.
Figure 3
Figure 3
Antidromic spikes. The antidromic propagation of a spike refers to its conduction in a direction opposite from the normal (orthodromic) direction (away from axon terminals to soma instead of propagating from the initial segment of the axon, close to the soma, toward axon terminals). To evoke antidromic spikes, axons are directly stimulated with a suprathreshold stimulus. Evoked spikes propagate in both directions (orthodromic and antidromic). This shows that axons do not have a preferential direction of conduction: the direction of propagation is given by the synapses, which are unidirectional [from the axon terminal (presynaptic element) to the postsynaptic element]. Antidromic activation is often used in a laboratory setting to confirm that a recorded neuron projects to the structure of interest. During HF DBS, antidromic spikes are evoked because an extracellular stimulation preferentially activates axons (axon terminals, passing axons). Criteria for identification of an antidromic spike are: (i) Stability of latency (because there are no synapses between the stimulating and recording sites), (ii) Faithful responses to high rates of stimulation (for the same reason as above), (iii) Collision of the antidromic spike (1) with an orthodromically traveling spike (2) because they meet along the same axon and annihilate each other. As antidromically activated units sometimes do not fire spontaneously, in order to perform a collision test the action potentials are orthodromically evoked by another stimulation or by depolarizing the soma with the recording electrode. (a) Three spikes recorded from the soma (blue recording electrode) in response to three stimuli (arrows) applied at the axon (red stimulating electrode) (three superimposed traces). (b) A spontaneous orthodromic spike (2) does not suppress the evoked spike (1) when it is recorded long before the stimulation but does so (c, *) when it is recorded 10 ms before the stimulation. These results show that spike 1 is an antidromic spike: it has a fixed latency (a), it faithfully follows high frequency stimulation (a) and it collides with spontaneous spikes (c).
Figure 4
Figure 4
Effect of STN HFS-evoked antidromic spikes on cortical activity. (A) Schematic illustration of the experimental design showing the stimulation and recording sites. (B) Antidromic spiking in cortical neurons evoked by STN-HFS (intracellular recording in the motor cortex). Black bar indicates the period of STN-HFS. Stimulation artefacts are removed. Right trace is a close-up of (B) left. Arrow shows a spontaneous spike before stimulation with subsequent loss of an antidromic spike caused by collision. Adapted from Li et al. (2007). (C) Evoked potentials in the ipsilateral motor cortex in response to bipolar stimulation of the dorsal STN. Latencies of the peaks were 4, 13.7, and 24.5 ms. The short-latency negative-evoked potential has a peak latency of 4 ms in bilateral frontal and central leads (C3, C4, Cz). Adapted from Kuriakose et al. (2010). (D) STN-HF DBS induces beta attenuation in motor cortex. Spectrogram of single cortical ECoG channel during HF DBS (top) 1.5 mM dorsal to the dorsal border of the STN and (bottom) within the STN (2.6 mM below dorsal border) from a representative patient. Black bars indicate the full time that HF DBS is on. The bars marked “AEs” indicate the period when HF DBS is increased from 0 to 3 V to test for adverse clinical effects; these segments were not used in analyses. The color scale indicates the level of log beta power on a decibel scale. Note the power rebound when STN DBS is turned off. Adapted from Whitmer et al. (2012). (E) From top to bottom and left to right. Optical HFS (130 Hz, 5-ms pulse width) reduces amphetamine-induced ipsilateral rotations in 6-OHDA Thy1::ChR2 mice (P < 0.01, n = five mice) in contrast to optical LFS (20 Hz, 5-ms pulse width, P > 0.05, n = four mice); t-test with m = 0. Sample paths before, during and after HFS are shown (100 s each, path lengths in cm). Adapted from Gradinaru et al. (2009). (F) Schematic illustration of the possible mechanisms underlying the antidromic effects of HFS. Spontaneous orthodromic spikes are in black and HFS-evoked antidromic spikes in red.
Figure 5
Figure 5
Kuramato oscillator. Periodically spiking neurons are characterized by the existence of an attractive limit cycle in their phase portrait. A classical way to reduce the complexity of analyzing their rhythm is to focus on their instantaneous position along this limit-cycle. Using phase-response curves, this abstraction enables the neuron's dynamics to be reduced to a single scalar variable, referred to as its phase. Phase models: For periodically spiking neurons whose limit cycle results from a Hopf bifurcation, the limit cycle can be abstracted to a periodic circle. A normal form of the resulting dynamics is known as the Andronov-Hopf oscillator, which is ruled by the complex equation: z˙i(t)=(jωi+1−|zi(t)|2)zi(t)+∑i=1Nκij(zi(t)−zi(t)), where ωi denotes the natural frequency of the i-th oscillator and κij are interconnection gains between the N oscillators. When the neuronal interconnection keeps the module of z(t) constant, the dynamics of the resulting phase θi takes an even simpler form, known as the Kuramoto oscillator (Kuramoto, 1984): θ˙i(t)=ωi+∑i=1Nκijsin(θj(t)−θi(t)) Such phase dynamics have been extensively used in the literature to predict synchrony onset in a neuronal population and to derive closed-loop stimulation strategies (Pyragas et al., ; Tukhlina et al., ; Omel chenko et al., ; Franci et al., 2011, 2012).
Figure 6
Figure 6
Model of Rubin and Terman. This scheme represents the synaptic interconnections, both within the basal ganglia and between their afferent and efferent anatomical structures. This type of circuit representation has generated several basal ganglia models, both at the microscopic and at the mesoscopic scales. Microscopic models: Neural activity is described at the level of each neuron. Following the approach of Hodgkin and Huxley (1952), the dynamics of the membrane voltage Vi(t) associated with the i-th neuron is described by a conductance model CmdVi(t)dt=gκni4(t)(EK−Vi(t))+gNami3(t)hi(t)(ENa−Vi(t))                   + gL(EL−Vi(t))+∑j=1nκijIijSyn(t)+IiExt(t) where the variables ni(t), mi(t), and hi(t) describe the opening-closing dynamics of different ion channels. In the work (Rubin and Terman, 2004), the parameters that appear in such conductance models are identified for the thalamus, the STN, the GPe, and the GPi. With these parameters in hand, the influence of (open-loop) DBS on model behavior can be analyzed. The conclusion of Rubin and Terman is that the effect of DBS on the STN/GPe/GPi network restores a normal interaction between the cortex and the thalamus, by breaking the pathological patterns generated by the STN/GPe interconnection. Mesoscopic models: Neural activity is described at the level of small neural populations; for example, the region of the sub-thalamic nucleus that is activated by a particular type of movement. Following the approach of Wilson and Cowan (1972), the activity of the i-th population is characterized by its firing rate ri(t), which satisfies the equation τidri(t)dt=−ri(t)+Fi(∑j ∈ Eκijrj(t−δij)−∑j ∈ Eκijrj(t−δij)+IiExt(t)) where E and I are the set of excitatory and inhibitory populations, respectively. The sigmoid function Fi, called the activation function, characterizes the degree of excitation of the i-th population as a function of the inputs that it receives from all the other populations. (Nevado Holgado et al., 2010) used this equation to derive a model of the STN/GPe network, with E = {Ctx, STN} and I = {Str, GPe}. In this model, the interconnection delays δij play a central role in the mechanism that generates pathological beta-band oscillations.
Figure 7
Figure 7
Illustration of a strategy of closed-loop DBS relying on the measurement y of the mean-field of the targeted neuronal population. Stimulation input u is dynamically established based on measurement y, and takes the form u = G(s)y, where G(s) denotes a filter that can either be proportional (G(s) = K) such as in Wagenaar et al. (2005); Leondopulos (2007); Franci et al. (2011, 2012); Liu et al. (2011), include integral or derivative terms such as in Pyragas et al. (2007), or rely on more involved filtering such as in Tukhlina et al. (2007).
Figure 8
Figure 8
Possible behaviors of a network of phase oscillators. Top left: Phase-locking (all phase differences tend to a constant value). Top right: Full desynchronization (all phases drift away from one another). Bottom left: Inhibition (all phases tend to a constant value, no oscillations persist). Bottom right: Practical phase-locking (phase differences do not tend to a constant value, but instantaneous frequencies remain close to each other).

References

    1. Alexander G. E., Crutcher M., DeLong M. R. (1990). Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res. 85, 119–146 10.1016/S0079-6123(08)62678-3
    1. Alexander G. E., DeLong M. R., Strick P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 10.1146/annurev.ne.09.030186.002041
    1. Ammari R., Bioulac B., Garcia L., Hammond C. (2011). The subthalamic nucleus becomes a generator of bursts in the dopamine-depleted state. Its high frequency stimulation dramatically weakens transmission to the globus pallidus. Front. Syst. Neurosci. 5 43 10.3389/fnsys.2011.00043
    1. Anderson M. E., Postupna N., Ruffo M. (2003). Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J. Neurophysiol. 89, 1150–1160 10.1152/jn.00475.2002
    1. Ashby P., Paradiso G., Saint-Cyr J. A., Chen R., Lang A. E., Lozano A. M. (2001). Potentials recorded at the scalp by stimulation near the human subthalamic nucleus. Clin. Neurophysiol. 112, 431–437 10.1016/S1388-2457(00)00532-0
    1. Aziz T. Z., Peggs D., Sambrook M. A., Crossman A. R. (1991). Lesion of the subthalamic nucleus for the alleviation of 1−methyl−4−phenyl−1, 2, 3, 6−tetrahydropyridine (MPTP)−induced parkinsonism in the primate. Mov. Disord. 6, 288–292 10.1002/mds.870060404
    1. Baker K. B., Montgomery E. B., Rezai A. R., Burgess R., Lüders H. O. (2002). Subthalamic nucleus deep brain stimulus evoked potentials: physiological and therapeutic implications. Mov. Disord. 17, 969–983 10.1002/mds.10206
    1. Barbe M. T., Liebhart L., Runge M., Deyng J., Florin E., Wojtecki L., et al. (2011). Deep brain stimulation of the ventral intermediate nucleus in patients with essential tremor: stimulation below intercommissural line is more efficient but equally effective as stimulation above. Exp. Neurol. 230, 131–137 10.1016/j.expneurol.2011.04.005
    1. Basu I., Graupe D., Tuninetti D., Slavin K. V. (2010). Stochastic modeling of the neuronal activity in the subthalamic nucleus and model parameter identification from Parkinson patient data. Biol. Cybern. 103, 273–283 10.1007/s00422-010-0397-3
    1. Batista C. A. S., Lopes S. R., Viana R. L., Batista A. M. (2010). Delayed feedback control of bursting synchronization in a scale-free neuronal network. Neural Netw. 23, 114–124 10.1016/j.neunet.2009.08.005
    1. Bekar L., Libionka W., Tian G. F., Xu Q., Torres A., Wang X., et al. (2008). Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat. Med. 14, 75–80 10.1038/nm1693
    1. Bellinger S. C., Miyazawa G., Steinmetz P. N. (2008). Submyelin potassium accumulation may functionally block subsets of local axons during deep brain stimulation: a modeling study. J. Neural Eng. 5, 263–274 10.1088/1741-2560/5/3/001
    1. Benabid A. L., Chabardes S., Torres N., Piallat B., Krack P., Fraix V., et al. (2009). Functional neurosurgery for movement disorders: a historical perspective. Prog. Brain Res. 175, 379–391 10.1016/S0079-6123(09)17525-8
    1. Benabid A. L., Pollak P., Hoffmann D., Gervason C., Hommel M., Perret J. E., et al. (1991). Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337, 403–406 10.1016/0140-6736(91)91175-T
    1. Benabid A. L., Pollak P., Louveau A., Henry S., De Rougemont J. (1987). Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl. Neurophysiol. 50, 344–346 10.1159/000100803
    1. Benabid A. L., Pollak P., Seigneuret E., Hoffmann D., Gay E., Perret J. (1993). Chronic VIM thalamic stimulation in Parkinson's disease, essential tremor and extra-pyramidal dyskinesias. Acta Neurochir. Suppl. (Wien). 58, 39
    1. Bosch C., Degos B., Deniau J. M., Venance L. (2011). Subthalamic nucleus high-frequency stimulation generates a concomitant synaptic excitation–inhibition in substantia nigra pars reticulata. J. Physiol. 89, 4189–4207 10.1113/jphysiol.2011.211367
    1. Brittain J. S., Probert-Smith P., Aziz T. Z., Brown P. (2013). Tremor suppression by rhythmic transcranial current stimulation. Curr. Biol. 23, 436–440 10.1016/j.cub.2013.01.068
    1. Britton T. C., Thompson P. D., Day B. L., Rothwell J. C., Findley L. J., Marsden C. D. (1993). Modulation of postural wrist tremors by magnetic stimulation of the motor cortex in patients with Parkinson's disease or essential tremor and in normal subjects mimicking tremor. Ann. Neurol. 33, 473–479 10.1002/ana.410330510
    1. Bronstein J. M., Tagliati M., Alterman R. L., Lozano A. M., Volkmann J., Stefani A., et al. (2011). Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch. Neurol. 68, 165 10.1001/archneurol.2010.260
    1. Brown P. (2003). Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson's disease. Mov. Disord. 18, 357–363 10.1002/mds.10358
    1. Castrioto A., Lozano A. M., Poon Y. Y., Lang A. E., Fallis M., Moro E. (2011). Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch. Neurol. 68, 1550 10.1001/archneurol.2011.182
    1. Chomiak T., Hu B. (2007). Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain. J. Physiol. 579(pt 2), 403–412 10.1113/jphysiol.2006.124057
    1. Coubes P., Roubertie A., Vayssiere N., Hemm S., Echenne B. (2000). Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus. Lancet 355, 2220–2221 10.1016/S0140-6736(00)02410-7
    1. Cunic D., Roshan L., Khan F. I., Lozano A. M., Lang A. E., Chen R. (2002). Effects of subthalamic nucleus stimulation on motor cortex excitability in Parkinson's disease. Neurology 58, 1665–1672 10.1212/WNL.58.11.1665
    1. Danzl P., Hespanha J. P., Moehlis J. (2009). Event-based minimum-time control of oscillatory neuron models. Biol. Cybern. 101, 387–399 10.1007/s00422-009-0344-3
    1. Degos B., Deniau J. M., Thierry A. M., Glowinski J., Pezard L., Maurice N. (2005). Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. J. Neurosci. 25, 7687–7696 10.1523/JNEUROSCI.1056-05.2005
    1. Dejean C., Hyland B., Arbuthnott G. (2009). Cortical effects of subthalamic stimulation correlate with behavioral recovery from dopamine antagonist induced akinesia. Cereb. Cortex 19, 1055–1063 10.1093/cercor/bhn149
    1. Deuschl G., Schade-Brittinger C., Krack P., Volkmann J., Schäfer H., Bötzel K., et al. (2006). A randomized trial of deep-brain stimulation for Parkinson's disease. N. Engl. J. Med. 355, 896–908 10.1056/NEJMoa060281
    1. Ermentrout G. B., Terman D. (2010). Mathematical Foundations of Neuroscience. New York, NY: Springer Verlag; 10.1007/978-0-387-87708-2
    1. Eusebio A., Cagnan H., Brown P. (2012). Does suppression of oscillatory synchronisation mediate some of the therapeutic effects of DBS in patients with Parkinson's disease? Front. Integr. Neurosci. 6: 47 10.3389/fnint.2012.00047
    1. Eusebio A., Pogosyan A., Wang S., Averbeck B., Gaynor L. D., Cantiniaux S., et al. (2009). Resonance in subthalamo-cortical circuits in Parkinson's disease. Brain 132, 2139–2150 10.1093/brain/awp079
    1. Eusebio A., Thevathasan W., Gaynor L. D., Pogosyan A., Bye E., Foltynie T., et al. (2011). Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J. Neurol. Neurosurg. Psychiatry 82, 569–573 10.1136/jnnp.2010.217489
    1. Feng C., Fei S. (2002). A unified approach for stability analysis of a class of time-varying nonlinear systems. IEEE T. Automat. Contr. 44, 998–1002 10.1109/9.763216
    1. Feng X. J., Greenwald B., Rabitz H., Shea-Brown E., Kosut R. (2007). Toward closed-loop optimization of deep brain stimulation for Parkinson's disease: concepts and lessons from a computational model. J. Neural Eng. 4, L14 10.1088/1741-2560/4/2/L03
    1. Fisher R., Salanova V., Witt T., Worth R., Henry T., Gross R., et al. (2010). Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51, 899–908 10.1111/j.1528-1167.2010.02536.x
    1. Flament D., Shapiro M. B., Pfann K. D., Moore C. G., Penn R. D., Corcos D. M. (2002). Reaction time is not impaired by stimulation of the ventral−intermediate nucleus of the thalamus (Vim) in patients with tremor. Mov. Disord. 17, 488–492 10.1002/mds.10120
    1. Follett K. A., Weaver F. M., Stern M., Hur K., Harris C. L., Luo P., et al. (2010). Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease. N. Engl. J. Med. 362, 2077–2091 10.1056/NEJMoa0907083
    1. Franci A., Chaillet A., Panteley E., Lamnabhi-Lagarrigue F. (2012). Desynchronization and inhibition of Kuramoto oscillators by scalar mean-field feedback. Math. Control Signals Syst. 24, 169–217 10.1007/s00498-011-0072-9
    1. Franci A., Chaillet A., Pasillas-Lépine W. (2011). Existence and robustness of phase-locking in coupled Kuramoto oscillators under mean-field feedback. Automatica 47, 1193–1202 10.1016/j.automatica.2011.03.003
    1. François C., Grabli D., McCairn K., Jan C., Karachi C., Hirsch E. C., et al. (2004). Behavioural disorders induced by external globus pallidus dysfunction in primates II. Brain 127, 2055–2070 10.1093/brain/awh239
    1. Franzini A., Ferroli P., Leone M., Broggi G. (2003). Stimulation of the posterior hypothalamus for treatment of chronic intractable cluster headaches: first reported series. Neurosurgery 52, 1095–1101 10.1227/01.NEU.0000057698.29634.D6
    1. Garcia L., Audin J., D'Alessandro G., Bioulac B., Hammond C. (2003). Dual effect of high-frequency stimulation on subthalamic neuron activity. J. Neurosci. 23, 8743–8751
    1. Gillies A., Willshaw D., Li Z. (2002). Subthalamic–pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proc. Biol. Sci. 269, 545–551 10.1098/rspb.2001.1817
    1. Gradinaru V., Mogri M., Thompson K. R., Henderson J. M., Deisseroth K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 10.1126/science.1167093
    1. Grant P., Lowery M. M. (2013). Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 584–594 10.1109/TNSRE.2012.2202403
    1. Graupe D., Basu I., Tuninetti D., Vannemreddy P., Slavin K. V. (2010). Adaptively controlling deep brain stimulation in essential tremor patient via surface electromyography. Neurol. Res. 32, 899–904 10.1179/016164110X12767786356354
    1. Guehl D., Benazzouz A., Aouizerate B., Cuny E., Rotgé J. Y., Rougier A., et al. (2008). Neuronal correlates of obsessions in the caudate nucleus. Biol. Psychiatry 63, 557–562 10.1016/j.biopsych.2007.06.023
    1. Gustafsson B., Jankowska E. (1976). Direct and indirect activation of nerve cells by electrical pulses applied extracellularly. J. Physiol. 258, 33–61
    1. Halpern C. H., Torres N., Hurtig H. I., Wolf J. A., Stephen J., Oh M. Y., et al. (2011). Expanding applications of deep brain stimulation: a potential therapeutic role in obesity and addiction management. Acta Neurochir. (Wien). 153, 2293–2306 10.1007/s00701-011-1166-3
    1. Hamani C., Machado D. C., Hipólide D. C., Dubiela F. P., Suchecki D., Macedo C. E., et al. (2012). Deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: role of serotonin and brain derived neurotrophic factor. Biol. Psychiatry 71, 30–35 10.1016/j.biopsych.2011.08.025
    1. Hammond C., Ammari R., Bioulac B., Garcia L. (2008). Latest view on the mechanism of action of deep brain stimulation. Mov. Disord. 23, 2111–2121 10.1002/mds.22120
    1. Hanson T. L., Fuller A. M., Lebedev M. A., Turner D. A., Nicolelis M. A. (2012). Subcortical neuronal ensembles: an analysis of motor task association, tremor, oscillations, and synchrony in human patients. J. Neurosci. 32, 8620–8632 10.1523/JNEUROSCI.0750-12.2012
    1. Hariz M. I., Shamsgovara P., Johansson F., Hariz G., Fodstad H. (1999). Tolerance and tremor rebound following long-term chronic thalamic stimulation for Parkinsonian and essential tremor. Stereotact. Funct. Neurosurg. 72, 208–218 10.1159/000029728
    1. Hashimoto T., Elder C. M., Okun M. S., Patrick S. K., Vitek J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J. Neurosci. 23, 1916–1923
    1. Hauptmann C., Popovych O., Tass P. A. (2005a). Delayed feedback control of synchronization in locally coupled neuronal networks. Neurocomputing 65, 759–767 10.1016/j.neucom.2004.10.072
    1. Hauptmann C., Popovych O., Tass P. A. (2005b). Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: a computational study. Biol. Cybern. 93, 463–470 10.1007/s00422-005-0020-1
    1. Hemm S., Mennessier G., Vayssiere N., Cif L., El Fertit H., Coubes P. (2005). Deep brain stimulation in movement disorders: stereotactic coregistration of two-dimensional electrical field modeling and magnetic resonance imaging. J. Neurosurg. 103, 949–955 10.3171/jns.2005.103.6.0949
    1. Hodgkin A. L., Huxley A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544
    1. Holgado A. J. N., Terry J. R., Bogacz R. (2010). Conditions for the generation of beta oscillations in the subthalamic nucleus–globus pallidus network. J. Neurosci. 30, 12340–12352 10.1523/JNEUROSCI.0817-10.2010
    1. Holsheimer J., Dijkstra E. A., Demeulemeester H., Nuttin B. (2000). Chronaxie calculated from current–duration and voltage–duration data. J. Neurosci. Methods 97, 45–50 10.1016/S0165-0270(00)00163-1
    1. Holtzheimer P. E., Mayberg H. S. (2011). Deep brain stimulation for psychiatric disorders. Annu. Rev. Neurosci. 34, 289–307 10.1146/annurev-neuro-061010-113638
    1. Hutchison W. D., Allan R. J., Opitz H., Levy R., Dostrovsky J. O., Lang A. E., et al. (1998). Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease. Ann. Neurol. 44, 622–628 10.1002/ana.410440407
    1. Hwynn N., Hass C. J., Zeilman P., Romrell J., Dai Y., Wu S. S., et al. (2011). Steady or not following thalamic deep brain stimulation for essential tremor. J. Neurol. 258, 1643–1648 10.1007/s00415-011-5986-0
    1. Isaias I. U., Alterman R. L., Tagliati M. (2009). Deep brain stimulation for primary generalized dystonia: long-term outcomes. Arch. Neurol. 66, 465–470 10.1001/archneurol.2009.20
    1. Izhikevich E. M. (2010). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Boston: MA, Lavoisier
    1. Klostermann F., Ehlen F., Vesper J., Nubel K., Gross M., Marzinzik F., et al. (2008). Effects of subthalamic deep brain stimulation on dysarthrophonia in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 79, 522–529 10.1136/jnnp.2007.123323
    1. Krack P., Batir A., Van Blercom N., Chabardes S., Fraix V., Ardouin C., et al. (2003). Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. N. Engl. J. Med. 349, 1925–1934 10.1056/NEJMoa035275
    1. Kumar R., Lozano A. M., Sime E., Lang A. E. (2003). Long-term follow-up of thalamic deep brain stimulation for essential and parkinsonian tremor. Neurology 61, 1601–1604 10.1212/01.WNL.0000096012.07360.1C
    1. Kunzle H. (1978). An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in macaca fascicularis. Brain Behav. Evol. 15, 185–234 10.1159/000123779
    1. Kuramoto Y. (1984). Chemical Oscillations, Waves, and Turbulence, Berlin: Springer Verlag; 10.1007/978-3-642-69689-3
    1. Kuriakose R., Saha U., Castillo G., Udupa K., Ni Z., Gunraj C., et al. (2010). The nature and time course of cortical activation following subthalamic stimulation in Parkinson's disease. Cereb. Cortex 20, 1926–1936 10.1093/cercor/bhp269
    1. Laxton A. W., Tang−Wai D. F., McAndrews M. P., Zumsteg D., Wennberg R., Keren R., et al. (2010). A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease. Ann. Neurol. 68, 521–534 10.1002/ana.22089
    1. Leblois A., Boraud T., Meissner W., Bergman H., Hansel D. (2006). Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J. Neurosci. 26, 3567–3583 10.1523/JNEUROSCI.5050-05.2006
    1. Ledonne A., Mango D., Bernardi G., Berretta N., Mercuri N. B. (2012). A continuous high frequency stimulation of the subthalamic nucleus determines a suppression of excitatory synaptic transmission in nigral dopaminergic neurons recorded in vitro. Exp. Neurol. 233, 292–302 10.1016/j.expneurol.2011.10.018
    1. Leondopulos S. S. (2007). A Study on Adaptive Stimulation of the Basal Ganglia as a Treatment for Parkinsonism. New Brunswick, NJ: PhD thesis
    1. Leone M., Franzini A., Broggi G., Bussone G. (2006). Hypothalamic stimulation for intractable cluster headache: long-term experience. Neurology 67, 150–152 10.1212/01.wnl.0000223319.56699.8a
    1. Li Q., Ke Y., Chan D. C., Qian Z. M., Yung K. K., Ko H., et al. (2012). Therapeutic deep brain stimulation in parkinsonian rats directly influences motor cortex. Neuron 76, 1030–1041 10.1016/j.neuron.2012.09.032
    1. Li S., Arbuthnott G. W., Jutras M. J., Goldberg J. A., Jaeger D. (2007). Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J. Neurophysiol. 98, 3525–3537 10.1152/jn.00808.2007
    1. Limousin P., Krack P., Pollak P., Benazzouz A., Ardouin C., Hoffmann D., et al. (1998). Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N. Engl. J. Med. 339, 1105–1111 10.1056/NEJM199810153391603
    1. Little S., Pogosyan A., Neal S., Zavala B., Zrinzo L., Hariz M., et al. (2013). Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74, 449–457 10.1002/ana.23951
    1. Liu J., Khalil H. K., Oweiss K. G. (2011). Model-based analysis and control of a network of basal ganglia spiking neurons in the normal and Parkinsonian states. J. Neural Eng. 8, 045002 10.1088/1741-2560/8/4/045002
    1. Liu J., Oweiss K. G., Khalil H. K. (2010). Feedback control of the spatiotemporal firing patterns of neural microcircuits, in IEEE Conference on Decision and Control, (Atlanta, GA: ) 4679–4684
    1. Luo M., Wu Y., Peng J. (2009). Washout filter aided mean field feedback desynchronization in an ensemble of globally coupled neural oscillators. Biol. Cybern. 101, 241–246 10.1007/s00422-009-0334-5
    1. Lysyansky B., Popovych O. V., Tass P. A. (2011). Desynchronizing anti-resonance effect of m: n ON–OFF coordinated reset stimulation. J. Neural Eng. 8, 036019 10.1088/1741-2560/8/3/036019
    1. MacKinnon C. D., Webb R. M., Silberstein P., Tisch S., Asselman P., Limousin P., et al. (2005). Stimulation through electrodes implanted near the subthalamic nucleus activates projections to motor areas of cerebral cortex in patients with Parkinson's disease. Eur. J. Neurosci. 21, 1394–1402 10.1111/j.1460-9568.2005.03952.x
    1. Magarinos-Ascone C., Pazo J. H., Macadar O., Buno W. (2002). High-frequency stimulation of the subthalamic nucleus silences subthalamic neurons: a possible cellular mechanism in Parkinson's disease. Neuroscience 115, 1109–1117 10.1016/S0306-4522(02)00538-9
    1. Mallet L., Polosan M., Jaafari N., Baup N., Welter M. L., Fontaine D., et al. (2008). Subthalamic nucleus stimulation in severe obsessive–compulsive disorder. N. Engl. J. Med. 359, 2121–2134 10.1056/NEJMoa0708514
    1. Marceglia S., Rossi L., Foffani G., Bianchi A., Cerutti S., Priori A. (2007). Basal ganglia local field potentials: applications in the development of new deep brain stimulation devices for movement disorders. Expert Rev. Med. Devices 4, 605–614 10.1586/17434440.4.5.605
    1. Marceglia S., Servello D., Foffani G., Porta M., Sassi M., Mrakic−Sposta S., et al. (2010). Thalamic single−unit and local field potential activity in Tourette syndrome. Mov. Disord. 25, 300–308 10.1002/mds.22982
    1. Mathai A., Wichmann T., Smith Y. (2013). More than meets the Eye-Myelinated axons crowd the subthalamic nucleus. Mov. Disord. 28, 1811–1815 10.1002/mds.25603
    1. Matharu M. S., Zrinzo L. (2010). Deep brain stimulation in cluster headache: hypothalamus or midbrain tegmentum? Curr. Pain Headache Rep. 14, 151–159 10.1007/s11916-010-0099-5
    1. Maurice N., Thierry A. M., Glowinski J., Deniau J. M. (2003). Spontaneous and evoked activity of substantia nigra pars reticulata neurons during high-frequency stimulation of the subthalamic nucleus. J. Neurosci. 23, 9929–9936
    1. May A., Bahra A., Büchel C., Frackowiak R. S., Goadsby P. J. (1998). Hypothalamic activation in cluster headache attacks. Lancet 352, 275–278 10.1016/S0140-6736(98)02470-2
    1. Mayberg H. S., Lozano A. M., Voon V., McNeely H. E., Seminowicz D., Hamani C., et al. (2005). Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 10.1016/j.neuron.2005.02.014
    1. McIntyre C. C., Grill W. M., Sherman D. L., Thakor N. V. (2004). Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J. Neurophysiol. 91, 1457–1469 10.1152/jn.00989.2003
    1. Meissner W., Leblois A., Hansel D., Bioulac B., Gross C. E., Benazzouz A., et al. (2005). Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain 128, 2372–2382 10.1093/brain/awh616
    1. Melega W. P., Lacan G., Gorgulho A. A., Behnke E. J., De Salles A. A. (2012). Hypothalamic deep brain stimulation reduces weight gain in an obesity-animal model. PLoS ONE 7: e30672 10.1371/journal.pone.0030672
    1. Moran A., Stein E., Tischler H., Belelovsky K., Bar-Gad I. (2011). Dynamic stereotypic responses of basal ganglia neurons to subthalamic nucleus high-frequency stimulation in the parkinsonian primate. Front. Syst. Neurosci. 5: 21 10.3389/fnsys.2011.00021
    1. Moro E., Lozano A. M., Pollak P., Agid Y., Rehncrona S., Volkmann J., et al. (2010). Long−term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease. Mov. Disord. 25, 578–586 10.1002/mds.22735
    1. Nowak L. G., Bullier J. (1998). Axons, but not cell bodies, are activated by electrical stimulation in the cortical gray matter. Exp. Brain Res. 118, 477–488 10.1007/s002210050304
    1. Nuttin B., Cosyns P., Demeulemeester H., Gybels J., Meyerson B. (1999). Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet, 354, 1526 10.1016/S0140-6736(99)02376-4
    1. O Suilleabhain P. E., Frawley W., Giller C., Dewey R. B. (2003). Tremor response to polarity, voltage, pulsewidth and frequency of thalamic stimulation. Neurology 60, 786–790 10.1212/01.WNL.0000044156.56643.74
    1. Omel chenko O. E., Hauptmann C., Maistrenko Y. L., Tass P. A. (2008). Collective dynamics of globally coupled phase oscillators under multisite delayed feedback stimulation. Phys. Nonlinear Phenom. 237, 365–384 10.1016/j.physd.2007.09.019
    1. Papavassiliou E., Rau G., Heath S., Abosch A., Barbaro N. M., Larson P. S., et al. (2004). Thalamic deep brain stimulation for essential tremor: relation of lead location to outcome. Neurosurgery 54, 1120–1130 10.1227/01.NEU.0000119329.66931.9E
    1. Parent A., De Bellefeuille L. (1983). The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method. Brain Res. 278, 11–27 10.1016/0006-8993(83)90222-6
    1. Parent A., Hazrati L. N. (1995). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res. Rev. 20, 128–154 10.1016/0165-0173(94)00008-D
    1. Pascual A., Modolo J., Beuter A. (2006). Is a computational model useful to understand the effect of deep brain stimulation in Parkinson's disease. J. Integr. Neurosci. 5, 541–560 10.1142/S021963520600132X
    1. Pasillas-Lépine W. (2013). Delay-induced oscillations in Wilson and Cowan's model: an analysis of the subthalamo-pallidal feedback loop in healthy and parkinsonian subjects. Biol. Cybern. 107, 289–308 10.1007/s00422-013-0549-3
    1. Pasillas-Lepine W., Haidar I., Chaillet A., Panteley E. (2013). Closed-loop deep brain stimulation based on firing-rate regulation, in 6th International IEEE EMBS Conference on Neural Engineering, (San Diego, CA: ), 1–4
    1. Pavlides A., John Hogan S., Bogacz R. (2012). Improved conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. Eur. J. Neurosci. 36, 2229–2239 10.1111/j.1460-9568.2012.08105.x
    1. Perlmutter J. S., Mink J. W., Bastian A. J., Zackowski K., Hershey T., Miyawaki E., et al. (2002). Blood flow responses to deep brain stimulation of thalamus. Neurology 58, 1388–1394 10.1212/WNL.58.9.1388
    1. Pfister J.-P., Tass P. A. (2010). STDP in oscillatory recurrent networks: theoretical conditions for desynchronization and applications to deep brain stimulation. Front. Comput. Neurosci. 4: 22 10.3389/fncom.2010.00022
    1. Pinto S., Gentil M., Krack P., Sauleau P., Fraix V., Benabid A. L., et al. (2005). Changes induced by levodopa and subthalamic nucleus stimulation on parkinsonian speech. Mov. Disord. 20, 1507–1515 10.1002/mds.20601
    1. Pyragas K., Popovych O., Tass P. A. (2007). Controlling synchrony in oscillatory networks with a separate stimulation-registration setup. Europhys. Lett. 80, 1–6 10.1209/0295-5075/80/40002
    1. Quaade F., Vaernet K., Larsson S. (1974). Stereotaxic stimulation and electrocoagulation of the lateral hypothalamus in obese humans. Acta Neurochir. Suppl. 30, 111–117 10.1007/BF01405759
    1. Ranck J. B. (1975). Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 98, 417–440 10.1016/0006-8993(75)90364-9
    1. Rodriguez-Oroz M. C., Moro E., Krack P. (2012). Long-term outcomes of surgical therapies for Parkinson's disease. Mov. Disord. 27, 1718–1728 10.1002/mds.25214
    1. Rosenblum M., Pikovsky A. (2004). Controlling synchronization in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 92, 114102 10.1103/PhysRevLett.92.114102
    1. Rosenblum M., Tukhlina N., Pikovsky A., Cimponeriu L. (2006). Delayed feedback suppression of collective rhythmic activity in a neuronal ensemble. Int. J. Bifurcat. Chaos 16, 1989–1999 10.1142/S0218127406015842
    1. Rosin B., Slovik M., Mitelman R., Rivlin-Etzion M., Haber S. N., Israel Z., et al. (2011). Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, 370–384 10.1016/j.neuron.2011.08.023
    1. Rossi L., Marceglia S., Foffani G., Cogiamanian F., Tamma F., Rampini P., et al. (2008). Subthalamic local field potential oscillations during ongoing deep brain stimulation in Parkinson's disease. Brain Res. Bull. 76, 512–521 10.1016/j.brainresbull.2008.01.023
    1. Rubin J. E., McIntyre C. C., Turner R. S., Wichmann T. (2012). Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects. Eur. J. Neurosci. 36, 2213–2228 10.1111/j.1460-9568.2012.08108.x
    1. Rubin J., Terman D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J. Comput. Neurosci. 16, 211–235 10.1023/B:JCNS.0000025686.47117.67
    1. Sáez-Zea C., Escamilla-Sevilla F., Katati M. J., Mínguez-Castellanos A. (2012). Cognitive Effects of Subthalamic Nucleus Stimulation in Parkinson's Disease: A Controlled Study. Eur. Neurol. 68, 361–366 10.1159/000341380
    1. Santaniello S., Fiengo G., Glielmo L., Grill W. M. (2011). Closed-loop control of deep brain stimulation: a simulation study. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 15–24 10.1109/TNSRE.2010.2081377
    1. Sato F., Parent M., Levesque M., Parent A. (2000). Axonal branching pattern of neurons of the subthalamic nucleus in primates. J. Comp. Neurol. 424, 142–152 10.1002/1096-9861(20000814)424:1<142::AID-CNE10>;2-8
    1. Schuurman P. R., Bosch D. A., Bossuyt P. M., Bonsel G. J., van Someren E. J., de Bie R. M., et al. (2000). A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N. Engl. J. Med. 342, 461–468 10.1056/NEJM200002173420703
    1. Sims R. E., Woodhall G. L., Wilson C. L., Stanford I. M. (2008). Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus in vitro. Eur. J. Neurosci. 28, 2401–2408 10.1111/j.1460-9568.2008.06546.x
    1. Smith G. S., Laxton A. W., Tang-Wai D. F., McAndrews M. P., Diaconescu A. O., Workman C. I., et al. (2012). Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Arch. Neurol. 69, 1141–1148 10.1001/archneurol.2012.590
    1. Stein E., Bar-Gad I. (2013). Beta oscillations in the cortico-basal ganglia loop during parkinsonism. Exp. Neurol. 245, 52–59 10.1016/j.expneurol.2012.07.023
    1. Strafella A. P., Vanderwerf Y., Sadikot A. F. (2004). Transcranial magnetic stimulation of the human motor cortex influences the neuronal activity of subthalamic nucleus. Eur. J. Neurosci. 20, 2245–2249 10.1111/j.1460-9568.2004.03669.x
    1. Tai C. H., Boraud T., Bezard E., Bioulac B., Gross C., Benazzouz A. (2003). Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata. FASEB J. 17, 1820–1830 10.1096/fj.03-0163com
    1. Takahashi A., Watanabe K., Satake K., Hirato M., Ohye C. (1998). Effect of electrical stimulation of the thalamic Vim nucleus on hand tremor during stereotactic thalamotomy. Electroencephalogr. Clin. Neurophysiol. 109, 376–384 10.1016/S0924-980X(98)00034-4
    1. Tass P. A., Qin L., Hauptmann C., Dovero S., Bezard E., Boraud T., et al. (2012). Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Ann. Neurol. 72, 816–820 10.1002/ana.23663
    1. Terman D., Rubin J. E., Yew A. C., Wilson C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22, 2963–2976
    1. Torres N., Chabardes S., Benabid A. L. (2011). Rationale for hypothalamus-deep brain stimulation in food intake disorders and obesity. Adv. Tech. Stand. Neurosurg. 36, 17–30 10.1007/978-3-7091-0179-7_2
    1. Tripoliti E., Strong L., Hickey F., Foltynie T., Zrinzo L., Candelario J., et al. (2011). Treatment of dysarthria following subthalamic nucleus deep brain stimulation for Parkinson's disease. Mov. Disord. 26, 2434–2436 10.1002/mds.23887
    1. Tukhlina N., Rosenblum M., Pikovsky A., Kurths J. (2007). Feedback suppression of neural synchrony by vanishing stimulation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 011918 10.1103/PhysRevE.75.011918
    1. Urbano J. F., Leznik E., Llinas R. R. (2002). Cortical activation patterns evoked by afferent axons stimuli at different frequencies:an in vitro voltage-sensitive dye imaging study. Thalamus Relat. Syst. 1, 371–378 10.1017/S1472928802000092
    1. Vasques X., Cif L., Mennessier G., Coubes P. (2010). A target-specific electrode and lead design for internal globus pallidus deep brain stimulation. Stereotact. Funct. Neurosurg. 88, 129–137 10.1159/000303524
    1. Vidailhet M., Vercueil L., Houeto J. L., Krystkowiak P., Lagrange C., Yelnik J., et al. (2007). Bilateral, pallidal, deep-brain stimulation in primary generalised dystonia: a prospective 3 year follow-up study. Lancet Neurol. 6, 223–229 10.1016/S1474-4422(07)70035-2
    1. Visser-Vandewalle V. (2007). DBS in Tourette syndrome: rationale, current status and future prospects. Acta Neurochir. Suppl. 97(pt 2), 215–222
    1. Volkmann J., Moro E., Pahwa R. (2006). Basic algorithms for the programming of deep brain stimulation in Parkinson's disease. Mov. Disord. 21, S284–S289 10.1002/mds.20961
    1. Wagenaar D. A., Madhavan R., Pine J., Potter S. M. (2005). Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. J. Neurosci. 25, 680–688 10.1523/JNEUROSCI.4209-04.2005
    1. Walker H. C., Huang H., Gonzalez C. L., Bryant J. E., Killen J., Cutter G. R., et al. (2012). Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson's disease. Mov. Disord. 27, 864–873 10.1002/mds.25025
    1. Walker H. C., Watts R. L., Schrandt C. J., Huang H., Guthrie S. L., Guthrie B. L., et al. (2011). Activation of subthalamic neurons by contralateral subthalamic deep brain stimulation in Parkinson disease. J. Neurophysiol. 105, 1112–1121 10.1152/jn.00266.2010
    1. Welter M. L., Burbaud P., Fernandez-Vidal S., Bardinet E., Coste J., Piallat B., et al. (2011). Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy. Transl. Psychiatry 1, e5 10.1038/tp.2011.5
    1. Whitmer D., de Solages C., Hill B., Yu H., Henderson J. M., Bronte-Stewart H. (2012). High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson's disease. Front. Hum. Neurosci. 6: 155 10.3389/fnhum.2012.00155
    1. Wilson C., Bryce Beverlin I. I., Netoff T. I. (2011). Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Front. Syst. Neurosci. 5: 50 10.3389/fnsys.2011.00050
    1. Wilson H. R., Cowan J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 10.1016/S0006-3495(72)86068-5
    1. Witt K., Daniels C., Reiff J., Krack P., Volkmann J., Pinsker M. O. (2008). Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study. Lancet Neurol. 7, 605–614 10.1016/S1474-4422(08)70114-5
    1. Wu Y. R., Levy R., Ashby P., Tasker R. R., Dostrovsky J. O. (2001). Does stimulation of the GPi control dyskinesia by activating inhibitory axons?. Mov. Disord. 16, 208–216 10.1002/mds.1046
    1. Zheng F., Lammert K., Nixdorf-Bergweiler B. E., Steigerwald F., Volkmann J., Alzheimer C. (2011). Axonal failure during high frequency stimulation of rat subthalamic nucleus. J. Physiol. 589, 2781–2793 10.1113/jphysiol.2011.205807

Source: PubMed

3
Subscribe