High specific torque is related to lengthening contraction-induced skeletal muscle injury

Christopher D Black, Christopher P Elder, Ashraf Gorgey, Gary A Dudley, Christopher D Black, Christopher P Elder, Ashraf Gorgey, Gary A Dudley

Abstract

Animal models implicate multiple mechanical factors in the initiation of exercise-induced muscle injury. Muscle injury has been widely studied in humans, but few data exist regarding the underlying cause of muscle injury. This study sought to examine the role of torque per active muscle volume in muscle injury. Eight subjects performed 80 electrically stimulated [via electromyostimulation (EMS)] eccentric contractions of the right and left quadriceps femoris (QF) through an 80 degrees arc at 120 degrees /s. Specific torque was varied by applying 25-Hz EMS to one thigh and 100-Hz EMS to the contralateral thigh. Transverse relaxation time (T2) magnetic resonance images of the QF were collected before and 3 days after the eccentric exercise bouts. Injury was assessed via changes in isometric force and ratings of soreness over the course of 14 days after exercise and by determining changes in T2 and muscle volume 3 days after exercise. The 100-Hz EMS induced greater force loss (P < 0. 05), soreness (P < 0.05), change in muscle volume (P = 0.03), and volume of muscle demonstrating increased T2 (P = 0.005) than the 25-Hz EMS. In addition, injury was found to be similar across the QF in all but the most proximal regions of the QF. Our findings suggest that, in humans, high torque per active volume during lengthening muscle contractions is related to muscle injury.

Source: PubMed

3
Subscribe