Microwave ablation combined with cementoplasty under real-time temperature monitoring in the treatment of 82 patients with recurrent spinal metastases after radiotherapy

Baohu Wang, Kaixian Zhang, Xusheng Zhang, Sen Yang, Miaomiao Hu, Peishun Li, Wanying Yang, Jing Fan, Chao Xing, Qianqian Yuan, Baohu Wang, Kaixian Zhang, Xusheng Zhang, Sen Yang, Miaomiao Hu, Peishun Li, Wanying Yang, Jing Fan, Chao Xing, Qianqian Yuan

Abstract

Background: The spine is the most frequently affected part of the skeletal system to metastatic tumors. External radiotherapy is considered the first-line standard of care for these patients with spine metastases. Recurrent spinal metastases after radiotherapy cannot be treated with further radiotherapy within a short period of time, making treatment difficult. We aimed to evaluate the effectiveness and safety of MWA combined with cementoplasty in the treatment of spinal metastases after radiotherapy under real-time temperature monitoring.

Methods: In this retrospective study, 82 patients with 115 spinal metastatic lesions were treated with MWA and cementoplasty under real-time temperature monitoring. Changes in visual analog scale (VAS) scores, daily morphine consumption, and Oswestry Disability Index (ODI) scores were noted. A paired Student's t-test was used to assess these parameters. Complications during the procedure were graded using the CTCAE version 5.0.

Results: Technical success was attained in all patients. The mean VAS score was 6.3 ± 2.0 (range, 4-10) before operation, and remarkable decline was noted in one month (1.7 ± 1.0 [P < .001]), three months (1.4 ± 0.8 [P < .001]), and six months (1.3 ± 0.8 [P < .001]) after the operation. Significant reductions in daily morphine consumption and ODI scores were also observed (P < .05). Cement leakage was found in 27.8% (32/115) of lesions, with no obvious associated symptoms.

Conclusion: MWA combined with cementoplasty under real-time temperature monitoring is an effective and safe method for recurrent spinal metastases after radiotherapy.

Keywords: Cementoplasty; Microwave ablation; Real-time temperature monitoring; Recurrent spinal metastases.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
A 58-year-old man with lung adenocarcinoma with L2 osteolytic metastasis (recurrence after radiotherapy) treated with MWA in combination with cementoplasty. L2 osteolytic metastasis showed on axial and sagittal reconstructed CT (a, b). The microwave ablation antennas (arrowheads) were inserted into the lesion through bilateral access (c, d). The thermometric electrode (arrow) was inserted into the left intervertebral foramen (e). The cement deposited in the vertebral body without significant leakage on axial and sagittal CT (f, g)
Fig. 2
Fig. 2
The changes of visual analog scale (VAS) scores (A), Daily morphine dose (mg) (B), and Oswestry Disability Index (ODI) (C) after operation

References

    1. Hosono N, Yonenobu K, Fuji T, Ebara S, Yamashita K, Ono K. Orthopaedic management of spinal metastases. Clin Orthop Relat Res. 1995;312:148–159.
    1. Bouras T, Zairi F, Arikat A, Vieillard M, Allaoui M, Assaker R. Decision Making for the Surgical Treatment of Vertebral Metastases Among Patients with Short Predicted Survival. World neurosurgery. 2018;111:e573–e580. doi: 10.1016/j.wneu.2017.12.107.
    1. Lutz S, Balboni T, Jones J, Lo S, Petit J, Rich S, Wong R, Hahn C. Palliative radiation therapy for bone metastases: Update of an ASTRO Evidence-Based Guideline. Pract Radiat Oncol. 2017;7(1):4–12. doi: 10.1016/j.prro.2016.08.001.
    1. Chow E, Zeng L, Salvo N, Dennis K, Tsao M, Lutz S. Update on the systematic review of palliative radiotherapy trials for bone metastases. Clinical Oncol (Royal College of Radiologists (Great Britain)) 2012;24(2):112–124. doi: 10.1016/j.clon.2011.11.004.
    1. Kurup AN, Callstrom MR. Ablation of skeletal metastases: current status. J Vasc Interv Radiol. 2010;21(8 Suppl):S242–250. doi: 10.1016/j.jvir.2010.05.001.
    1. Clark W, Bird P, Gonski P, Diamond T, Smerdely P, McNeil H, Schlaphoff G, Bryant C, Barnes E, Gebski V. Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet (London, England) 2016;388(10052):1408–1416. doi: 10.1016/S0140-6736(16)31341-1.
    1. Bae J, Gwak H, Kim S, Joo J, Shin S, Yoo H, Lee S. Percutaneous vertebroplasty for patients with metastatic compression fractures of the thoracolumbar spine: clinical and radiological factors affecting functional outcomes. Spine J. 2016;16(3):355–364. doi: 10.1016/j.spinee.2015.11.033.
    1. Jiao D, Yao Y, Li Z, Ren J, Han X. Simultaneous C-arm Computed Tomography-Guided Microwave Ablation and Cementoplasty in Patients with Painful Osteolytic Bone Metastases: A Single-center Experience. Acad Radiol. 2020;29(1):42–50. doi: 10.1016/j.acra.2020.09.026.
    1. Khan MA, Deib G, Deldar B, Patel AM, Barr JS. Efficacy and Safety of Percutaneous Microwave Ablation and Cementoplasty in the Treatment of Painful Spinal Metastases and Myeloma. AJNR Am J Neuroradiol. 2018;39(7):1376–1383. doi: 10.3174/ajnr.A5680.
    1. Kastler A, Alnassan H, Aubry S, Kastler B. Microwave thermal ablation of spinal metastatic bone tumors. J Vasc Interv Radiol. 2014;25(9):1470–1475. doi: 10.1016/j.jvir.2014.06.007.
    1. Pusceddu C, Sotgia B, Fele R, Melis L. Treatment of bone metastases with microwave thermal ablation. J Vasc Interv Radiol. 2013;24(2):229–233. doi: 10.1016/j.jvir.2012.10.009.
    1. Shimony J, Gilula L, Zeller A, Brown D. Percutaneous vertebroplasty for malignant compression fractures with epidural involvement. Radiology. 2004;232(3):846–853. doi: 10.1148/radiol.2323030353.
    1. Diehn F, Neeman Z, Hvizda J, Wood B. Remote thermometry to avoid complications in radiofrequency ablation. J Vasc Interv Radiol. 2003;14(12):1569–1576. doi: 10.1097/01.RVI.0000096769.74047.5.
    1. Dupuy D, Liu D, Hartfeil D, Hanna L, Blume J, Ahrar K, Lopez R, Safran H, DiPetrillo T. Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial. Cancer. 2010;116(4):989–997. doi: 10.1002/cncr.24837.
    1. Lubner M, Brace C, Hinshaw J, Lee F. Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol. 2010;21:S192–203. doi: 10.1016/j.jvir.2010.04.007.
    1. Papalexis N, Parmeggiani A, Peta G, Spinnato P, Miceli M, Facchini G. Minimally Invasive Interventional Procedures for Metastatic Bone Disease: A Comprehensive Review. Current Oncol (Toronto, Ont) 2022;29(6):4155–4177. doi: 10.3390/curroncol29060332.
    1. Zhang X, Ye X, Zhang K, Qiu Y, Fan W, Yuan Q, Fan J, Wu L, Yang S, Hu M, et al. Computed Tomography-Guided Microwave Ablation Combined with Osteoplasty for the Treatment of Bone Metastases: A Multicenter Clinical Study. J Vasc Interv Radiol. 2021;32(6):861–868. doi: 10.1016/j.jvir.2021.03.523.
    1. Wu L, Fan J, Yuan Q, Zhang X, Hu M, Zhang K. Computed tomography-guided microwave ablation combined with percutaneous vertebroplasty for treatment of painful high thoracic vertebral metastases. Int J Hyperthermia. 2021;38(1):1069–1076. doi: 10.1080/02656736.2021.1951364.
    1. Pusceddu C, Sotgia B, Fele R, Ballicu N, Melis L. Combined Microwave Ablation and Cementoplasty in Patients with Painful Bone Metastases at High Risk of Fracture. Cardiovasc Intervent Radiol. 2016;39(1):74–80. doi: 10.1007/s00270-015-1151-y.
    1. Mathis JM. Percutaneous Vertebroplasty. In: Johnson BA, Staats PS, Wetzel FT, Mathis JM, editors. Image-Guided Spine Interventions. New York: Springer New York; 2004. pp. 245–272.
    1. Gangi A, Buy X, Irani F, Guth S, Guermazi A, Imbert J-P, Dietemann J-L. Percutaneous Cementoplasty. In: Gangi A, Guth S, Guermazi A, editors. Imaging in Percutaneous Musculoskeletal Interventions. Berlin: Springer Berlin Heidelberg; 2009. pp. 197–257.
    1. Deramond H, Depriester C, Chiras J, Cotten A, Boutry N, Cortet B. Tumors. In: Mathis JM, Deramond H, Belkoff SM, editors. Percutaneous Vertebroplasty. New York: Springer New York; 2002. pp. 125–153.
    1. Appel N, Gilula L. Percutaneous vertebroplasty in patients with spinal canal compromise. AJR Am J Roentgenol. 2004;182(4):947–951. doi: 10.2214/ajr.182.4.1820947.
    1. van der Linden E, Kroft L, Dijkstra P. Treatment of vertebral tumor with posterior wall defect using image-guided radiofrequency ablation combined with vertebroplasty: preliminary results in 12 patients. J Vasc Interv Radiol. 2007;18(6):741–747. doi: 10.1016/j.jvir.2007.02.018.
    1. Halpin R, Bendok B, Sato K, Liu J, Patel J, Rosen S. Combination treatment of vertebral metastases using image-guided percutaneous radiofrequency ablation and vertebroplasty: a case report. Surgical neurology. 2005;63(5):469–474; discussion 474–465. doi: 10.1016/j.surneu.2004.04.025.
    1. Tsoumakidou G, Garnon J, Ramamurthy N, Buy X, Gangi A. Interest of electrostimulation of peripheral motor nerves during percutaneous thermal ablation. Cardiovasc Intervent Radiol. 2013;36(6):1624–1628. doi: 10.1007/s00270-013-0641-z.
    1. Konno S, Olmarker K, Byröd G, Nordborg C, Strömqvist B, Rydevik B. The European Spine Society AcroMed Prize 1994. Acute thermal nerve root injury. Eur Spine J. 1994;3(6):299–302. doi: 10.1007/BF02200140.
    1. Nakatsuka A, Yamakado K, Maeda M, Yasuda M, Akeboshi M, Takaki H, Hamada A, Takeda K. Radiofrequency ablation combined with bone cement injection for the treatment of bone malignancies. J Vasc Interv Radiol. 2004;15(7):707–712. doi: 10.1097/01.RVI.0000133507.40193.E4.
    1. Clarençon F, Jean B, Pham H, Cormier E, Bensimon G, Rose M, Maksud P, Chiras J. Value of percutaneous radiofrequency ablation with or without percutaneous vertebroplasty for pain relief and functional recovery in painful bone metastases. Skeletal Radiol. 2013;42(1):25–36. doi: 10.1007/s00256-011-1294-0.
    1. Buy X, Tok C-H, Szwarc D, Bierry G, Gangi A. Thermal Protection During Percutaneous Thermal Ablation Procedures: Interest of Carbon Dioxide Dissection and Temperature Monitoring. Cardiovasc Intervent Radiol. 2009;32(3):529–534. doi: 10.1007/s00270-009-9524-8.
    1. Tsoumakidou G, Buy X, Garnon J, Enescu J, Gangi A. Percutaneous thermal ablation: how to protect the surrounding organs. Tech Vasc Interv Radiol. 2011;14(3):170–176. doi: 10.1053/j.tvir.2011.02.009.
    1. Diehn FE, Neeman Z, Hvizda JL, Wood BJ. Remote thermometry to avoid complications in radiofrequency ablation. J Vasc Interv Radiol. 2003;14(12):1569–1576. doi: 10.1097/01.RVI.0000096769.74047.5.
    1. Nakatsuka A, Yamakado K, Takaki H, Uraki J, Makita M, Oshima F, Takeda K. Percutaneous radiofrequency ablation of painful spinal tumors adjacent to the spinal cord with real-time monitoring of spinal canal temperature: a prospective study. Cardiovasc Intervent Radiol. 2009;32(1):70–75. doi: 10.1007/s00270-008-9390-9.

Source: PubMed

3
Subscribe