Effects of Agave Fructans, Inulin, and Starch on Metabolic Syndrome Aspects in Healthy Wistar Rats

Evelyn Regalado-Rentería, Juan Rogelio Aguirre-Rivera, César Iván Godínez-Hernández, Juan Carlos García-López, A Cuauhtémoc Oros-Ovalle, Fidel Martínez-Gutiérrez, Marco Martinez-Martinez, Stefan Ratering, Sylvia Schnell, Miguel Ángel Ruíz-Cabrera, Bertha Irene Juárez-Flores, Evelyn Regalado-Rentería, Juan Rogelio Aguirre-Rivera, César Iván Godínez-Hernández, Juan Carlos García-López, A Cuauhtémoc Oros-Ovalle, Fidel Martínez-Gutiérrez, Marco Martinez-Martinez, Stefan Ratering, Sylvia Schnell, Miguel Ángel Ruíz-Cabrera, Bertha Irene Juárez-Flores

Abstract

Healthy Wistar rats were supplemented during 20 weeks with commercial inulin (I) and Agave tequilana fructans (CAT), experimental fructans from A. tequilana (EAT) and A. salmiana (AS) mature stems, rice starch 10% (RS), and standard feed for rodents (C). Feed intake was kept steady, but with I, body weight and abdominal adipose tissue (6.01 g) decreased at the end. Glucose (mg/dL) (C, 120.52; I, 110.69; CAT, 105.75; EAT, 115.48; AS, 101.63; and RS, 121.82), total cholesterol (C, 89.89; I, 64.48; CAT, 68.04; EAT, 68.74; AS, 68.04; and RS, 82), and triglycerides (C, 84.03; I, 59.52; CAT, 68.56; EAT, 59.08; AS, 75.27; and RS, 81.8) kept being normal and without differences between fructans. At the end, there was a significant increase in lactic acid bacteria when the I and AS groups were compared to the C group (C, 9.18; I, 10.64; CAT, 10.34; EAT, 10.36; AS, 10.49; and RS, 9.62 log 10 CFU/g of feces). In addition, with fructans, there was an accelerated process in feces emptiness, Lieberkühn crypts kept their morphology, and there was an increment of goblet cells.

Conflict of interest statement

The authors declare no competing financial interest.

Copyright © 2020 American Chemical Society.

Figures

Figure 1
Figure 1
Abdominal adipose tissue wet weight (g). C, control; I, commercial inulin; CAT, commercial fructans from A. tequilana; EAT, experimental fructans from A. tequilana; AS, fructans from A. salmiana; RS, rice starch. Means ± SEM (n = 9).
Figure 2
Figure 2
Variation of wet feces pH during the experimental period. C, control; I, commercial inulin; ATC, commercial fructans of A. tequilana; ATE, experimental fructans of A. tequilana; AS, fructans of A. salmiana; RS, rice starch. Means ± SEM (n = 9).
Figure 3
Figure 3
Relative abundance of significantly different ASVs in feces at the beginning (B) and at the end of the experiment (F) of each treatment: C, control; I, commercial inulin; CAT, commercial fructans from A. tequilana; EAT, experimental fructans from A. tequilana; AS, fructans from A. salmiana; RS, rice starch. Each taxon representing >1% of the average relative abundance in each treatment is indicated by a different color.
Figure 4
Figure 4
Heat map of delta values for each bacterium and treatment, representing the percent of ASV at the beginning and at the end of the experiment. The red color means an increase while the blue color means a decrease; the numbers of each color correspond to the value of the difference.
Figure 5
Figure 5
Weight of wet cecal content (g). C, control; I, commercial inulin; CAT, commercial fructans from A. tequilana; EAT, experimental fructans from A. tequilana; AS, fructans from A. salmiana; RS, rice starch. Means ± SD (n = 9).
Figure 6
Figure 6
Sample section of colon tissue (40×) stained by hematoxylin-eosin. C: Control, I: Commercial inulin, (c) CAT: Commercial fructans from A. tequilana, EAT: Experimental fructans from A. tequilana, AS: Fructans from A. salmiana, RS: Rice starch.

References

    1. D’Argenio V.; Salvatore F. The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta 2015, 451, 97–102. 10.1016/j.cca.2015.01.003.
    1. Siró I.; Kápolna E.; Kápolna B.; Lugasi A. Functional food. Product development, marketing and consumer acceptance- A review. Appetite 2008, 51, 456–467. 10.1016/j.appet.2008.05.060.
    1. Gibson G. R.; Roberfroid M. B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. 10.1093/jn/125.6.1401.
    1. Gibson G. R.; Hutkins R.; Sanders M. E.; Prescott S. L.; Reimer R. A.; Salminen S. J.; Scott K.; Stanton C.; Swanson K. S.; Cani P. D.; Verbeke K.; Reid G. Expert consensus document:The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. 10.1038/nrgastro.2017.75.
    1. Van Arkel J.; Sévenier R.; Hakkert J.C.; Bouwmeester H. J.; Koops A. J.; Van Der Meer I. M.. Fructan biosynthesis regulation and the production of tailor-made fructan in plants. In Polysaccharides: Natural Fibers in Food and Nutrition; Benkeblia N. Eds.; CRC Press, Taylor & Francis Group: Boca Raton, Florida, USA, 2014; pp. 5–22.
    1. Flamm G.; Glinsmann W.; Kritchevsky D.; Prosky L.; Roberfroid M. Inulin and oligofructose as dietary fiber: a review of the evidence. Crit. Rev. Food Sci. Nutr. 2001, 41, 353–362. 10.1080/20014091091841.
    1. Roberfroid M.; Gibson G. R.; Hoyles L.; McCartney A. L.; Rastall R.; Rowland I.; Wolvers D.; Watzl B.; Szajewska H.; Stahl B.; Guarner F.; Respondek F.; Whelan K.; Coxam V.; Davicco M.-J.; Léotoing L.; Wittrant Y.; Delzenne N. M.; Cani P. D.; Neyrinck A. M.; Meheust A. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 2010, 104, S1–S63. 10.1017/S0007114510003363.
    1. Mueller M.; Schwarz S.; Viernstein H.; Loeppert R.; Praznik W. Growth of selected probiotic strains with fructans from agaves and chicory. Agro Food Ind. Hi-Tech 2016, 27, 54–57.
    1. Luo J.; Rizkalla S. W.; Alamowitch C.; Boussairi A.; Blayo A.; Barry J. L.; Laffitte A.; Guyon F.; Bornet F. R.; Slama G. Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism. Am. J. Clin. Nutr. 1996, 63, 939–945. 10.1093/ajcn/63.6.939.
    1. Delzenne N. M.; Kok N. Effect of non-digestible fermentable carbohydrates on hepatic fatty acid metabolism. Biochem. Soc. Trans. 1998, 26, 228–231. 10.1042/bst0260228.
    1. Coussement P. A. A. Inulin and oligofructose: safe intakes and legal status. J. Nutr. 1999, 129, 1412S–1417S. 10.1093/jn/129.7.1412S.
    1. Godínez-Hernández C. I.; Aguirre-Rivera J. R.; Juárez Flores B. I. Importancia creciente de los fructanos del maguey. Retos y perspectivas. Tecnoagave 2016, 5, 26–29.
    1. Sanchez-Marroquin A.; Hope P. H. Agave juice: fermentation and chemical composition studies of some species. J. Agric. Food. Chem. 1953, 1, 246–249. 10.1021/jf60003a007.
    1. Fish S. K.; Fish P. R.; Miksicek C.; Madsen J. Prehistoric Agave Cultivation in Southern Arizona. Desert Plants. 1985, 7, 107–112.
    1. Leach J. D. Prebiotics in ancient diets. Food Sci. Tech. Bull. Funct. Foods. 2007, 4, 1–8. 10.1616/1476-2137.14801.
    1. Leach J. D.; Sobolik K. D. High dietary intake of prebiotic inulin-type fructans in the prehistoric Chihuahuan Desert. Br. J. Nutr. 2010, 103, 1558–1561. 10.1017/S0007114510000966.
    1. Gentry H. S.Agaves of Continental North America, 2nd ed.; The University of Arizona Press: Tucson Arizona, USA, 1998, pp.670.
    1. García Mendoza A. Los Agaves de México. Ciencias 2007, 87, 14–23.
    1. Aguirre-Rivera J. R.; Charcas-Salazar H.; Flores J. L.. El Maguey Mezcalero Potosino, Universidad Autónoma de San Luis Potosí y Consejo Potosino de Ciencia y Tecnología, COPOCYT, UASLP:San Luis Potosí S. L. P., México, 2001, pp.78.
    1. Lopez M. G.; Mancilla-Margalli N. A.; Mendoza-Diaz G. Molecular structures of fructans from Agave tequilana Weber var. azul. J. Agric. Food Chem. 2003, 51, 7835–7840. 10.1021/jf030383v.
    1. Crispín-Isidro G.; Lobato-Calleros C.; Espinosa-Andrews H.; Alvarez-Ramirez J.; Vernon-Carter E. J. Effect of inulin and agave fructans addition on the rheological, microstructural and sensory properties of reduced-fat stirred yogurt. LWT--Food Sci. Technol. 2015, 62, 438–444. 10.1016/j.lwt.2014.06.042.
    1. González-Herrera S. M.; Herrera R. R.; López M. G.; Rutiaga O. M.; Aguilar C. N.; Esquivel J. C. C.; Martínez L. A. O. Inulin in food products: prebiotic and functional ingredient. Br. Food J. 2015, 117, 371–387. 10.1108/bfj-09-2013-0238.
    1. Sosa-Herrera M. G.; Delgado-Reyes V. A.. Propiedades funcionales y aplicaciones tecnológicas de fructanos. In Alimentos Funcionales de Hoy; Ramírez Ortiz M. E. (Ed.), OmniaScience: Barcelona, España, 2016, pp. 97–116.
    1. Urías-Silvas J. E.; Cani P. D.; Delmée E.; Neyrinck A.; López M. G.; Delzenne N. M. Physiological effects of dietary fructans extracted from Agave tequilana Gto. and Dasylirion spp. Br. J. Nutr. 2008, 99, 254–261. 10.1017/S0007114507795338.
    1. Márquez-Aguirre A. L.; Camacho-Ruiz R. M.; Arriaga-Alba M.; Padilla-Camberos E.; Kirchmayr M. R.; Blasco J. L.; González-Avila M. Effects of Agave tequilana fructans with different degree of polymerization profiles on the body weight, blood lipids and count of fecal Lactobacilli/ Bifidobacteria in obese mice. Food Funct. 2013, 4, 1237–1244. 10.1039/C3FO60083A.
    1. Moreno-Vilet L.; Garcia-Hernandez M. H.; Delgado-Portales R. E.; Corral-Fernandez N. E.; Cortez-Espinosa N.; Ruiz-Cabrera M. A.; Portales-Perez D. P. In vitro assessment of agave fructans (Agave salmiana) as prebiotics and immune system activators. Int. J. Biol. Macromol. 2014, 63, 181–187. 10.1016/j.ijbiomac.2013.10.039.
    1. Márquez-Aguirre A. L.; Camacho-Ruíz R. M.; Gutiérrez-Mercado Y. K.; Padilla-Camberos E.; González-Ávila M.; Gálvez-Gastélum F. J.; Díaz-Martínez N. E.; Ortuño-Sahagún D. Fructans from Agave tequilana with a lower degree of polymerization prevent weight gain, hyperglycemia and liver steatosis in high-fat diet-induced obese mice. Plant Foods Hum. Nutr. 2016, 71, 416–421. 10.1007/s11130-016-0578-x.
    1. Cani P. D.; Dewever C.; Delzenne N. M. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br. J. Nutr. 2004, 92, 521–526. 10.1079/bjn20041225.
    1. Franck A. Technological functionality of inulin and oligofructose. Br. J. Nutr. 2002, 87, S287–S291. 10.1079/bjn/2002550.
    1. Santiago-García P. A.; López M. G. Agavins from Agave angustifolia and Agave potatorum affect food intake, body weight gain and satiety-related hormones (GLP-1 and ghrelin) in mice. Food Funct. 2014, 5, 3311–3319. 10.1039/C4FO00561A.
    1. Huazano-García A.; López M. G. Agavins reverse the metabolic disorders in overweight mice through the increment of short chain fatty acids and hormones. Food Funct. 2015, 6, 3720–3727. 10.1039/c5fo00830a.
    1. Rozan P.; Nejdi A.; Hidalgo S.; Bisson J.-F.; Desor D.; Messaoudi M. Effects of lifelong intervention with an oligofructose-enriched inulin in rats on general health and lifespan. Br. J. Nutr. 2008, 100, 1192–1199. 10.1017/S0007114508975607.
    1. Huazano-García A.; Shin H.; López M. Modulation of Gut Microbiota of Overweight Mice by Agavins and Their Association with Body Weight Loss. Nutrients 2017, 9, 821.10.3390/nu9090821.
    1. Delzenne N. M.; Cani P. D.; Daubioul C.; Neyrinck A. M. Impact of inulin and oligofructose on gastrointestinal peptides. Br. J. Nutr. 2005, 93, S157–S161. 10.1079/bjn20041342.
    1. Meier J. J.; Gallwitz B.; Schmidt W. E.; Nauck M. A. Glucagon-like peptide 1 as a regulator of food intake and body weight: therapeutic perspectives. Eur. J. Pharmacol. 2002, 440, 269–279. 10.1016/S0014-2999(02)01434-6.
    1. Meier J. J.; Nauck M. A.; Schmidt W. E.; Gallwitz B. Gastric inhibitory polypeptide: the neglected incretin revisited. Regul. Pept. 2002, 107, 1–13. 10.1016/S0167-0115(02)00039-3.
    1. Meier J. J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2012, 8, 728–742. 10.1038/nrendo.2012.140.
    1. Chaudhri O. B.; Salem V.; Murphy K. G.; Bloom S. R. Gastrointestinal satiety signals. Annu. Rev. Physiol. 2008, 70, 239–255. 10.1146/annurev.physiol.70.113006.100506.
    1. Fiordaliso M.; Kok N.; Desager J.-P.; Goethals F.; Deboyser D.; Roberfroid M.; Delzenne N. Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids 1995, 30, 163–167. 10.1007/bf02538270.
    1. Bolant-Hernández B.; Calvo-Bermúdez M. A.; Cejalvo-Lapeña D.; Gimeno-Forner O.; Gimeno-Forner L.; Lloris-Carsí J. M. Hematología y Bioquímica Clínica de la Rata. Parte 2. Res. Surgery. 1990, 4, 12–20.
    1. Giknis M. L. A.; Clifford C. B.. Clinical Laboratory Parameter for Crl: WI (Han); Charles River Laboratories: 2008, 1–14.
    1. Dantas J. A.; Ambiel C. R.; Cuman R. K. N.; Baroni S.; Amado C. A. B. Valores de referĉncia de alguns parâmetros fisiológicos de ratos do Biotério Central da Universidade Estadual de Maringá, Estado do Paraná. Acta Sci. Health Sci. 2006, 28, 165–170. 10.4025/actascihealthsci.v28i2.1099.
    1. Lima C. M.; Lima A. K.; Dória Melo M. G.; Dória G. A. A.; Serafini M. R.; Albuquerque-Júnor R. L. C.; Araújo A. A. S. Valores de referĉncia hematológicos e bioquímicos de ratos (Rattus novergicus linhagem Wistar) provenientes do biotério da Universidade Tiradentes. Sci. Plena 2014, 10, 1–9.
    1. Castillo Andrade A. I.; Rivera Bautista C.; Godínez Hernández C. I.; Ruiz Cabrera M. A.; Fuentes Ahumada C.; García Chávez E.; Grajales Lagunes A. Physiometabolic effects of Agave salmiana fructans evaluated in Wistar rats. Int. J. Biol. Macromol. 2018, 108, 1300–1309. 10.1016/j.ijbiomac.2017.11.043.
    1. Jasso-Padilla I.; Juárez-Flores B.; Alvarez-Fuentes G.; De la Cruz-Martínez A.; González-Ramírez J.; Moscosa-Santillán M.; González-Chávez M.; Oros-Ovalle C.; Prell F.; Czermak P.; Martínez-Gutierrez F. Effect of prebiotics of Agave salmiana fed to healthy Wistar rats. J. Sci. Food Agric. 2016, 97, 553–563. 10.1002/jsfa.7764.
    1. García-Curbelo Y.; Bocourt R.; Savón L. L.; García-Vieyra M. I.; López M. G. Prebiotic effect of Agave fourcroydes fructans: an animal model. Food Funct. 2015, 6, 3177–3182. 10.1039/c5fo00653h.
    1. Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 1999, 46, 183–196.
    1. Cummings J. H.; Macfarlane G. T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Microbiol. 1991, 70, 443–459. 10.1111/j.1365-2672.1991.tb02739.x.
    1. Cummings J. H.Human Colonic Bacteria: Role in Nutrition. Physiology and Pathology; Gibson G. R.; Macfarlane G. T. (Eds.), CRC Press, Taylor & Francis: Boca Raton Florida,USA, 1995, pp. 292.
    1. Rendón-Huerta J. A.; Juárez-Flores B.; Pinos-Rodríguez J. M.; Aguirre-Rivera J. R.; Delgado-Portales R. E. Effects of different sources of fructans on body weight, blood metabolites and fecal bacteria in normal and obese non-diabetic and diabetic rats. Plant Foods Hum. Nutr. 2012, 67, 64–70. 10.1007/s11130-011-0266-9.
    1. Castillo Andrade A. I.; Rivera Bautista C.; Ruiz Cabrera M. A.; Soria Guerra R. E.; García Chávez E.; Fuentes Ahumada C.; Grajales Lagunes A. Agave salmiana fructans as gut health promoters: Prebiotic activity and inflammatory response in Wistar healthy rats. Int. J. Biol. Macromol. 2019, 136, 785–795. 10.1016/j.ijbiomac.2019.06.045.
    1. Walker G. J.; Hope P. M. The action of some α-amylases on starch granules. Biochem. J. 1963, 86, 452.10.1042/bj0860452.
    1. Mayes R. W.; O̷rskov E. R. The utilization of gelled maize starch in the small intestine of sheep. Br. J. Nutr. 1974, 32, 143.10.1079/BJN19740064.
    1. Campbell J. M.; Fahey G. C. Jr.; Wolf B. W. Selected Indigestible Oligosaccharides Affect Large Bowel Mass, Cecal and Fecal Short-Chain Fatty Acids, pH and Microflora in Rats. J. Nutr. 1997, 130–136. 10.1093/jn/127.1.130.
    1. Metcalf A. M.; Phillips S. F.; Zinsmeister A. R.; MacCarty R. L.; Beart R. W.; Wolff B. G. Simplified assessment of segmental colonic transit. Gastroenterology 1987, 92, 40–47. 10.1016/0016-5085(87)90837-7.
    1. Koropatkin N. M.; Cameron E. A.; Martens E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 2012, 10, 323–335. 10.1038/nrmicro2746.
    1. Ermund A.; Schütte A.; Johansson M. E. V.; Gustafsson J. K.; Hansson G. C. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer’s patches. Am. J. Physiol.: Gastrointest. Liver physiol. 2013, 305, G341–G347. 10.1152/ajpgi.00046.2013.
    1. Li D.; Chen H.; Mao B.; Yang Q.; Zhao J.; Gu Z.; Zhang H.; Chen Y. Q.; Chen W. Microbial Biogeography and Core Microbiota of the Rat Digestive Tract. Sci. Rep. 2017, 7, 45840.10.1038/srep45840.
    1. Everard A.; Lazarevic V.; Gaïa N.; Johansson M.; Ståhlman M.; Backhed F.; Delzenne N. M.; Schrenzel J.; Frančois P.; Cani P. D. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 2014, 8, 2116–2130. 10.1038/ismej.2014.45.
    1. Mao B.; Li D.; Zhao J.; Liu X.; Gu Z.; Chen Y. Q.; Zhang H.; Chen W. Metagenomic insights into the effects of fructo-oligosaccharides (FOS) on the composition of fecal microbiota in mice. J. Agric. Food Chem. 2015, 63, 856–863. 10.1021/jf505156h.
    1. Castillo-Martínez D.; Rosas-Barrientos J. V.; Serrano-López A.; Amezcua-Guerra L. M. Enfermedad Inflamatoria Intestinal. Rev. Esp. Med.-Quir. 2005, 10, 10–20.
    1. Schenk M.; Bouchon A.; Seibold F.; Mueller C. TREM-1 - Expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J. Clin. Invest. 2007, 117, 3097–3106. 10.1172/JCI30602.
    1. Savage D. C. Gastrointestinal microflora in mammalian nutrition. Annu. Rev. Nutr. 1986, 6, 155–178. 10.1146/annurev.nu.06.070186.001103.
    1. Topping D. L.; Clifton P. M. Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. 10.1152/physrev.2001.81.3.1031.
    1. Slavin J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013, 5, 1417–1435. 10.3390/nu5041417.
    1. López Panqueva R. d. P. Hepatopatología para gastroenterólogos y hepatólogos. Segunda parte. Terminología útil en la interpretación de los hallazgos histopatológicos. Rev. Colomb. Gastroenterol. 2013, 28, 247–255.
    1. Burgel P.R.; Nadel J. A.. Mucus and Mucin-Secreting Cells. In Asthma and COPD, Basic Mechanisms and Clinical Management; Barnes P. J.; Drazen J. M.; Rennard S.; Thomson N. C. (Eds.), Academic Press: 2002, pp. 155–163, 10.1016/B978-012079028-9/50091-0.
    1. Godínez-Hernández C. I.; Aguirre-Rivera J. R.; Juárez Flores B. I.; Ortíz-Pérez M. D.; Becerra-Jiménez J. Extraction and characterization of Agave salmiana Otto ex Salm-Dyck fructans. Rev. Chapingo Serie Cienc. For. Ambient. 2016, XXII, 59–72. 10.5154/r.rchscfa.2015.02.007.
    1. Diario Oficial de la Federación (1984, 7 de febrero). Ley General de Salud, Reglamento de la Ley General de Salud en Materia de Investigación para la Salud, Título séptimo: de la Investigación que incluya a la utilización de animales de experimentación, Capítulo único, Artículos 121–126, México. Retrieved from: .
    1. Diario Oficial de la Federación (2001, 18 de junio). Norma Oficial Mexicana NOM 062-ZOO-1999. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, México. Retrieved from: .
    1. Miles A. A.; Misra S. S.; Irwin J. O. The estimation of the bactericidal power of the blood. Epidemiol. Infect. 1938, 38, 732–749. 10.1017/S002217240001158X.
    1. Tannock G. W.; Lawley B.; Munro K.; Pathmanathan S. G.; Zhou S. J.; Makrides M.; Gibson R. A.; Sullivan T.; Prosser C. G.; Lowry D.; Hodgkinson A. J. Comparison of the Compositions of the Stool Microbiotas of Infants Fed Goat Milk Formula, Cow Milk-Based Formula, or Breast Milk Downloaded from. Appl. Environ. Microbiol. 2013, 79, 3040–3048. 10.1128/AEM.03910-12.
    1. Engelbrektson A.; Kunin V.; Wrighton K. C.; Zvenigorodsky N.; Chen F.; Ochman H.; Hugenholtz P. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J. 2010, 4, 642–647. 10.1038/ismej.2009.153.
    1. Kaplan H.; Ratering S.; Felix-Henningsen P.; Schnell S. Stability of in Situ Immobilization of Trace Metals with Different Amendments Revealed by Microbial 13C-Labelled Wheat Root Decomposition and Efflux-Mediated Metal Resistance of Soil Bacteria. Sci. Total Environ. 2019, 659, 1082–1089. 10.1016/j.scitotenv.2018.12.441.
    1. Callahan B. J.; McMurdie P. J.; Rosen M. J.; Han A. W.; Johnson A. J. A.; Holmes S. P. DADA2: High-resolution sample inference from Illumina am-plicon data. Nat. Methods 2016, 13, 581–583. 10.1038/nmeth.3869.
    1. Quast C.; Pruesse E.; Yilmaz P.; Gerken J.; Schweer T.; Yarza P.; Peplines J.; Glöckner F. O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. 10.1093/nar/gks1219.
    1. McMurdie P. J.; Holmes S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One 2013, 8, e6121710.1371/journal.pone.0061217.
    1. Oksanen J.; Blanchet F. G.; Kindt R.; Legendre P.; Minchin P. R.; O’Hara R. B.; Simpson G. L.; Solymos P.; Stevens M. H. H.; Wagner H.. Vegan: Community Ecology Package. R Package Version 2.2–0. 2019.
    1. Loredo Ramírez A.; Llamas Alba E.; Escalante Padrón F. J.. Histología, 3° Edición, Universo Editorial SA de CV, Zacatecas Zac., México, 1997, pp. 296–301.

Source: PubMed

3
Subscribe