Bidirectional Interactions between the Menstrual Cycle, Exercise Training, and Macronutrient Intake in Women: A Review

Sílvia Rocha-Rodrigues, Mónica Sousa, Patrícia Lourenço Reis, César Leão, Beatriz Cardoso-Marinho, Marta Massada, José Afonso, Sílvia Rocha-Rodrigues, Mónica Sousa, Patrícia Lourenço Reis, César Leão, Beatriz Cardoso-Marinho, Marta Massada, José Afonso

Abstract

Women have a number of specificities that differentiate them from men. In particular, the role of sex steroid hormones and the menstrual cycle (MC) significantly impact women's physiology. The literature has shown nonlinear relationships between MC, exercise, and nutritional intake. Notably, these relationships are bidirectional and less straightforward than one would suppose. For example, the theoretical implications of the MC's phases on exercise performance do not always translate into relevant practical effects. There is often a disconnect between internal measures (e.g., levels of hormone concentrations) and external performance. Furthermore, it is not entirely clear how nutritional intake varies across the MC's phases and whether these variations impact on exercise performance. Therefore, a thorough review of the existing knowledge could help in framing these complex relationships and potentially contribute to the optimization of exercise prescription and nutritional intake according to the naturally occurring phases of the MC. Throughout this review, an emerging trend is the lack of generalizability and the need to individualize interventions, since the consequences of the MC's phases and their relationships with exercise and nutritional intake seem to vary greatly from person to person. In this sense, average data are probably not relevant and could potentially be misleading.

Keywords: exercise performance; interindividual variability; macronutrients; menstrual cycle; nutritional intake; sex hormones; women.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Kim Y.J., Tamadon A., Park H.T., Kim H., Ku S.-Y. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos. Sarcopenia. 2016;2:140–155. doi: 10.1016/j.afos.2016.06.002.
    1. Acconcia F., Marino M. Steroid Hormones: Synthesis, Secretion, and Transport. In: Belfiore A., LeRoith D., editors. Principles of Endocrinology and Hormone Action. Springer International Publishing; Cham, Switzerland: 2016. pp. 1–31.
    1. Fuentes N., Silveyra P. Chapter Three—Estrogen receptor signaling mechanisms. In: Donev R., editor. Advances in Protein Chemistry and Structural Biology. Volume 116. Academic Press; Cambridge, MA, USA: 2019. pp. 135–170.
    1. Heldring N., Pike A., Andersson S., Matthews J., Cheng G., Hartman J., Gustafsson J.-Å. Estrogen Receptors: How Do They Signal and What Are Their Targets. Physiol. Rev. 2007;87:905–931. doi: 10.1152/physrev.00026.2006.
    1. Kendall B., Eston R. Exercise-Induced Muscle Damage and the Potential Protective Role of Estrogen. Sports Med. 2002;32:103–123. doi: 10.2165/00007256-200232020-00003.
    1. Aizawa K., Iemitsu M., Otsuki T., Maeda S., Miyauchi T., Mesaki N. Sex differences in steroidogenesis in skeletal muscle following a single bout of exercise in rats. J. Appl. Physiol. 2008;104:67–74. doi: 10.1152/japplphysiol.00558.2007.
    1. Sato K., Iemitsu M. Exercise and sex steroid hormones in skeletal muscle. J. Steroid Biochem. Mol. Biol. 2015;145:200–205. doi: 10.1016/j.jsbmb.2014.03.009.
    1. Ahrens K.A., Vladutiu C.J., Mumford S.L., Schliep K.C., Perkins N.J., Wactawski-Wende J., Schisterman E.F. The effect of physical activity across the menstrual cycle on reproductive function. Ann. Epidemiol. 2014;24:127–134. doi: 10.1016/j.annepidem.2013.11.002.
    1. Janse De Jonge X.A.K. Effects of the menstrual cycle on exercise performance. Sports Med. 2003;33:833–851. doi: 10.2165/00007256-200333110-00004.
    1. Daniel M., Craig S., Simon B.C., Kirsty J.E.-S. Period Prevalence and Perceived Side Effects of Hormonal Contraceptive Use and the Menstrual Cycle in Elite Athletes. Int. J. Sports Physiol. Perform. 2018;13:926–932. doi: 10.1123/ijspp.2017-0330.
    1. Afonso J., Clemente F.M., Ribeiro J., Ferreira M., Fernandes R.J. Towards a de facto Nonlinear Periodization: Extending Nonlinearity from Programming to Periodizing. Sports (Basel) 2020;8:110. doi: 10.3390/sports8080110.
    1. Devries M.C., Hamadeh M.J., Phillips S.M., Tarnopolsky M.A. Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2006;291:R1120–R1128. doi: 10.1152/ajpregu.00700.2005.
    1. Kammoun I., Ben Saâda W., Sifaou A., Haouat E., Kandara H., Ben Salem L., Ben Slama C. Change in women’s eating habits during the menstrual cycle. Ann. D’endocrinologie. 2017;78:33–37. doi: 10.1016/j.ando.2016.07.001.
    1. McLay R.T., Thomson C.D., Williams S.M., Rehrer N.J. Carbohydrate Loading and Female Endurance Athletes: Effect of Menstrual-Cycle Phase. Int. J. Sport Nutr. Exerc. Metab. 2007;17:189–205. doi: 10.1123/ijsnem.17.2.189.
    1. Hatta H., Atomi Y., Shinohara S., Yamamoto Y., Yamada S. The Effects of Ovarian Hormones on Glucose and Fatty Acid Oxidation during Exercise in Female Ovariectomized Rats. Horm. Metab. Res. 1988;20:609–611. doi: 10.1055/s-2007-1010897.
    1. Oosthuyse T., Bosch A.N. The effect of the menstrual cycle on exercise metabolism: Implications for exercise performance in eumenorrhoeic women. Sports Med. 2010;40:207–227. doi: 10.2165/11317090-000000000-00000.
    1. Sims S.T., Heather A.K. Myths and Methodologies: Reducing scientific design ambiguity in studies comparing sexes and/or menstrual cycle phases. Exp. Physiol. 2018;103:1309–1317. doi: 10.1113/EP086797.
    1. Goodman-Gruen D., Barrett-Connor E. Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women. Diabetes Care. 2000;23:912. doi: 10.2337/diacare.23.7.912.
    1. Taylor H.S., Pal L., Seli E. Speroff’s Clinical Gynecologic Endocrinology and Infertility. 9th ed. Williams & Wilkins (LWW); Philadelphia, PA, USA: 2019.
    1. Horstman A.M., Dillon E.L., Urban R.J., Sheffield-Moore M. The Role of Androgens and Estrogens on Healthy Aging and Longevity. J. Gerontol. Ser. A. 2012;67:1140–1152. doi: 10.1093/gerona/gls068.
    1. Knowlton A.A., Lee A.R. Estrogen and the cardiovascular system. Pharmacol. Ther. 2012;135:54–70. doi: 10.1016/j.pharmthera.2012.03.007.
    1. Rosano G.M., Fini M. Comparative cardiovascular effects of different progestins in menopause. Int. J. Fertil. Womens Med. 2001;46:248–256.
    1. Behan M., Wenninger J.M. Sex steroidal hormones and respiratory control. Respir. Physiol. Neurobiol. 2008;164:213–221. doi: 10.1016/j.resp.2008.06.006.
    1. Kalkhoff R.K. Metabolic effects of progesterone. Am. J. Obstet. Gynecol. 1982;142:735–738. doi: 10.1016/S0002-9378(16)32480-2.
    1. Mauvais-Jarvis F., Clegg D.J., Hevener A.L. The role of estrogens in control of energy balance and glucose homeostasis. Endocr. Rev. 2013;34:309–338. doi: 10.1210/er.2012-1055.
    1. Westerlind K.C., Byrnes W.C., Freedson P.S., Katch F.I. Exercise and Serum Androgens in Women. Physician Sportsmed. 1987;15:87–94. doi: 10.1080/00913847.1987.11709351.
    1. Cui J., Shen Y., Li R. Estrogen synthesis and signaling pathways during aging: From periphery to brain. Trends Mol. Med. 2013;19:197–209. doi: 10.1016/j.molmed.2012.12.007.
    1. Campos C., Casali K.R., Baraldi D., Conzatti A., Araújo A.S.d.R., Khaper N., Belló-Klein A. Efficacy of a Low Dose of Estrogen on Antioxidant Defenses and Heart Rate Variability. Oxidative Med. Cell. Longev. 2014;2014:218749. doi: 10.1155/2014/218749.
    1. Strehlow K., Rotter S., Wassmann S., Adam O., Grohé C., Laufs K., Nickenig G. Modulation of antioxidant enzyme expression and function by estrogen. Circ. Res. 2003;93:170–177. doi: 10.1161/01.Res.0000082334.17947.11.
    1. Liedtke S., Schmidt M.E., Vrieling A., Lukanova A., Becker S., Kaaks R., Steindorf K. Postmenopausal Sex Hormones in Relation to Body Fat Distribution. Obesity. 2012;20:1088–1095. doi: 10.1038/oby.2011.383.
    1. Rocha-Rodrigues S. Physical exercise and sex steroid hormones in breast cancer. Hum. Mov. 2020 doi: 10.5114/hm.2021.100006.
    1. Tworoger S.S., Missmer S.A., Eliassen A.H., Barbieri R.L., Dowsett M., Hankinson S.E. Physical activity and inactivity in relation to sex hormone, prolactin, and insulin-like growth factor concentrations in premenopausal women. Cancer Causes Control. 2007;18:743–752. doi: 10.1007/s10552-007-9017-5.
    1. Verkasalo P.K., Thomas H.V., Appleby P.N., Davey G.K., Key T.J. Circulating levels of sex hormones and their relation to risk factors for breast cancer: A cross-sectional study in 1092 pre- and postmenopausal women (United Kingdom) Cancer Causes Control. 2001;12:47–59. doi: 10.1023/A:1008929714862.
    1. Williams N.I., Reed J.L., Leidy H.J., Legro R.S., De Souza M.J. Estrogen and progesterone exposure is reduced in response to energy deficiency in women aged 25–40 years. Hum. Reprod. 2010;25:2328–2339. doi: 10.1093/humrep/deq172.
    1. Smith A.J., Phipps W.R., Arikawa A.Y., O’Dougherty M., Kaufman B., Thomas W., Kurzer M.S. Effects of aerobic exercise on premenopausal sex hormone levels: Results of the WISER study, a randomized clinical trial in healthy, sedentary, eumenorrheic women. Cancer Epidemiol. Biomark. Prev. 2011;20:1098–1106. doi: 10.1158/1055-9965.EPI-10-1219.
    1. Ennour-Idrissi K., Maunsell E., Diorio C. Effect of physical activity on sex hormones in women: A systematic review and meta-analysis of randomized controlled trials. Breast Cancer Res. 2015;17:139. doi: 10.1186/s13058-015-0647-3.
    1. Kyröläinen H., Hackney A.C., Salminen R., Repola J., Häkkinen K., Haimi J. Effects of Combined Strength and Endurance Training on Physical Performance and Biomarkers of Healthy Young Women. J. Strength Cond. Res. 2018;32:1554–1561. doi: 10.1519/JSC.0000000000002034.
    1. Sutton-Tyrrell K., Wildman Rachel P., Matthews Karen A., Chae C., Lasley Bill L., Brockwell S., Torréns Javier I. Sex Hormone–Binding Globulin and the Free Androgen Index Are Related to Cardiovascular Risk Factors in Multiethnic Premenopausal and Perimenopausal Women Enrolled in the Study of Women Across the Nation (SWAN) Circulation. 2005;111:1242–1249. doi: 10.1161/01.CIR.0000157697.54255.CE.
    1. Xu W.-H., Feng L., Liu Y., Cai D.-Q., Wen N., Zheng W.-J. Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide) Int. J. Mol. Med. 2016;37:1475–1486. doi: 10.3892/ijmm.2016.2559.
    1. Enns D.L., Tiidus P.M. The Influence of Estrogen on Skeletal Muscle. Sports Med. 2010;40:41–58. doi: 10.2165/11319760-000000000-00000.
    1. Hansen M. Female hormones: Do they influence muscle and tendon protein metabolism? Proc. Nutr. Soc. 2018;77:32–41. doi: 10.1017/S0029665117001951.
    1. Collins B.C., Mader T.L., Cabelka C.A., Iñigo M.R., Spangenburg E.E., Lowe D.A. Deletion of estrogen receptor α in skeletal muscle results in impaired contractility in female mice. J. Appl. Physiol. 2018;124:980–992. doi: 10.1152/japplphysiol.00864.2017.
    1. Kitajima Y., Ono Y. Estrogens maintain skeletal muscle and satellite cell functions. J. Endocrinol. 2016;229:267. doi: 10.1530/JOE-15-0476.
    1. Liu S.H., Al-Shaikh R.A., Panossian V., Finerman G.A.M., Lane J.M. Estrogen Affects the Cellular Metabolism of the Anterior Cruciate Ligament: A Potential Explanation for Female Athletic Injury. Am. J. Sports Med. 1997;25:704–709. doi: 10.1177/036354659702500521.
    1. Taraborrelli S. Physiology, production and action of progesterone. Acta Obstet. Et Gynecol. Scand. 2015;94:8–16. doi: 10.1111/aogs.12771.
    1. Chabbert-Buffeta N., Skinner D.C., Caraty A., Bouchard P. Neuroendocrine effects of progesterone. Steroids. 2000;65:613–620. doi: 10.1016/S0039-128X(00)00187-2.
    1. Chidi-Ogbolu N., Baar K. Effect of Estrogen on Musculoskeletal Performance and Injury Risk. Front. Physiol. 2019;9:1834. doi: 10.3389/fphys.2018.01834.
    1. Schumacher M., Mattern C., Ghoumari A., Oudinet J.P., Liere P., Labombarda F., Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: Resurgence of the progesterone receptors. Prog. Neurobiol. 2014;113:6–39. doi: 10.1016/j.pneurobio.2013.09.004.
    1. Mas A., Elam L., Diamond M.P., Simon C., Al-Hendy A. Synergistic effect of estrogen and progesterone on myometrial stem cell expansion in vivo. Fertil. Steril. 2015;104:e72. doi: 10.1016/j.fertnstert.2015.07.220.
    1. Candolfi M., Jaita G., Zaldivar V., Zárate S., Ferrari L., Pisera D., Seilicovich A. Progesterone Antagonizes the Permissive Action of Estradiol on Tumor Necrosis Factor-α-Induced Apoptosis of Anterior Pituitary Cells. Endocrinology. 2005;146:736–743. doi: 10.1210/en.2004-1276.
    1. Janse De Jonge X.A.K., Boot C.R.L., Thom J.M., Ruell P.A., Thompson M.W. The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. J. Physiol. 2001;530:161–166. doi: 10.1111/j.1469-7793.2001.0161m.x.
    1. Uotinen N., Puustinen R., Pasanen S., Manninen T., Kivineva M., Syvälä H., Ylikomi T. Distribution of progesterone receptor in female mouse tissues. Gen. Comp. Endocrinol. 1999;115:429–441. doi: 10.1006/gcen.1999.7333.
    1. Greeves J.P., Cable N.T., Reilly T. The Relationship between Maximal Muscle Strength and Reproductive Hormones during the Menstrual Cycle; Proceedings of the 4th Annual Congress of the European College of Sport Science; Rome, Italy. 14–17 July 1999.
    1. Phillips S.K., Sanderson A.G., Birch K., Bruce S.A., Woledge R.C. Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. (Pt 2)J. Physiol. 1996;496:551–557. doi: 10.1113/jphysiol.1996.sp021706.
    1. Sarwar R., Niclos B.B., Rutherford O.M. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J. Physiol. 1996;493:267–272. doi: 10.1113/jphysiol.1996.sp021381.
    1. Campbell S.E., Febbraio M.A. Effect of ovarian hormones on mitochondrial enzyme activity in the fat oxidation pathway of skeletal muscle. Am. J. Physiol. -Endocrinol. Metab. 2001;281:E803–E808. doi: 10.1152/ajpendo.2001.281.4.E803.
    1. Kenagy R., Weinstein I.R.A., Heimberg M. The Effects of 17β-Estradiol and Progesterone on the Metabolism of Free Fatty Acid by Perfused Livers from Normal Female and Ovariectomized Rats*. Endocrinology. 1981;108:1613–1621. doi: 10.1210/endo-108-5-1613.
    1. Hagan C.R., Lange C.A. Molecular determinants of context-dependent progesterone receptor action in breast cancer. BMC Med. 2014;12:32. doi: 10.1186/1741-7015-12-32.
    1. Tseng L., Gusberg S.B., Gurpide E. Estradiol receptor and 17β-Dehydrogenase in normal and abnormal human endometrium. Ann. N. Y. Acad. Sci. 1977;286:190–198. doi: 10.1111/j.1749-6632.1977.tb29416.x.
    1. Mesaki N., Sasaki J., Shoji M., Iwasaki H., Asano K., Eda M. Hormonal changes during incremental exercise in athletic women. Nihon Sanka Fujinka Gakkai Zasshi. 1986;38:45–52.
    1. Bonen A., Belcastro A.N., Ling W.Y., Simpson A.A. Profiles of selected hormones during menstrual cycles of teenage athletes. J. Appl. Physiol. 1981;50:545–551. doi: 10.1152/jappl.1981.50.3.545.
    1. Montagnani C.F., Arena B., Maffulli N. Estradiol and progesterone during exercise in healthy untrained women. Med. Sci. Sports Exerc. 1992;24:764–768. doi: 10.1249/00005768-199207000-00005.
    1. Sato K., Iemitsu M., Katayama K., Ishida K., Kanao Y., Saito M. Responses of sex steroid hormones to different intensities of exercise in endurance athletes. Exp. Physiol. 2016;101:168–175. doi: 10.1113/EP085361.
    1. Ziomkiewicz A., Ellison P.T., Lipson S.F., Thune I., Jasienska G. Body fat, energy balance and estradiol levels: A study based on hormonal profiles from complete menstrual cycles. Hum. Reprod. 2008;23:2555–2563. doi: 10.1093/humrep/den213.
    1. González-Alonso J., Teller C., Andersen S.L., Jensen F.B., Hyldig T., Nielsen B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J. Appl. Physiol. 1999;86:1032–1039. doi: 10.1152/jappl.1999.86.3.1032.
    1. Janse De Jonge X.A.K., Thompson M.W., Chuter V.H., Silk L.N., Thom J.M. Exercise performance over the menstrual cycle in temperate and hot, humid conditions. Med. Sci. Sports Exerc. 2012;44:2190–2198. doi: 10.1249/MSS.0b013e3182656f13.
    1. D’Eon T.M., Sharoff C., Chipkin S.R., Grow D., Ruby B.C., Braun B. Regulation of exercise carbohydrate metabolism by estrogen and progesterone in women. Am. J. Physiol. Endocrinol. Metab. 2002;283:E1046–E1055. doi: 10.1152/ajpendo.00271.2002.
    1. Lamont L.S., Lemon P.W., Bruot B.C. Menstrual cycle and exercise effects on protein catabolism. Med. Sci. Sports Exerc. 1987;19:106–110.
    1. Braun B., Horton T. Endocrine regulation of exercise substrate utilization in women compared to men. Exerc. Sport. Sci. Rev. 2001;29:149–154. doi: 10.1097/00003677-200110000-00003.
    1. Draper C.F., Duisters K., Weger B., Chakrabarti A., Harms A.C., Brennan L., van der Greef J. Menstrual cycle rhythmicity: Metabolic patterns in healthy women. Sci. Rep. 2018;8:14568. doi: 10.1038/s41598-018-32647-0.
    1. Kenney W.L., Wilmore J.H., Costill D.L. Physiology of Sport and Exercise. 5th ed. Human Kinetics; Champaign, IL, USA: 2012.
    1. Ekenros L., Papoutsi Z., Fridén C., Dahlman Wright K., Lindén Hirschberg A. Expression of sex steroid hormone receptors in human skeletal muscle during the menstrual cycle. Acta Physiol. (Oxf.) 2017;219:486–493. doi: 10.1111/apha.12757.
    1. Teixeira A.L.d.S., Fernandes Júnior W., Marques F.A.D., Lacio M.L.d., Dias M.R.C. Influência das diferentes fases do ciclo menstrual na flexibilidade de mulheres jovens. Rev. Bras. De Med. Do Esporte. 2012;18:361–364.
    1. Matsuda T., Furuhata T., Ogata H., Kamemoto K., Yamada M., Sakamaki-Sunaga M. Effects of the Menstrual Cycle on Serum Carnitine and Endurance Performance of Women. Int. J. Sports Med. 2020;41:443–449. doi: 10.1055/a-1088-5555.
    1. Sim M., Dawson B., Landers G., Trinder D., Peeling P. Iron Regulation in Athletes: Exploring the Menstrual Cycle and Effects of Different Exercise Modalities on Hepcidin Production. Int. J. Sport Nutr. Exerc. Metab. 2014;24:177. doi: 10.1123/ijsnem.2013-0067.
    1. Herzberg S.D., Motu’apuaka M.L., Lambert W., Fu R., Brady J., Guise J.-M. The Effect of Menstrual Cycle and Contraceptives on ACL Injuries and Laxity: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2017:5. doi: 10.1177/2325967117718781.
    1. Balachandar V., Marciniak J.-L., Wall O., Balachandar C. Effects of the menstrual cycle on lower-limb biomechanics, neuromuscular control, and anterior cruciate ligament injury risk: A systematic review. Musclesligaments Tendons J. 2017;7:136–146. doi: 10.11138/mltj/2017.7.1.136.
    1. Fridén C., Saartok T., Bäckström C., Leanderson J., Renström P. The influence of premenstrual symptoms on postural balance and kinesthesia during the menstrual cycle. Gynecol. Endocrinol. 2003;17:433–440. doi: 10.1080/09513590312331290358.
    1. Lee B.J., Cho K.H., Lee W.H. The effects of the menstrual cycle on the static balance in healthy young women. J. Phys. Ther. Sci. 2017;29:1964–1966. doi: 10.1589/jpts.29.1964.
    1. Emami F., Kordi Yoosefinejad A., Motealleh A. Comparison of static and dynamic balance during early follicular and ovulation phases in healthy women, using simple, clinical tests: A cross sectional study. Gynecol. Endocrinol. 2019;35:257–260. doi: 10.1080/09513590.2018.1519788.
    1. Melegario S.M., Simão R., Vale R.G.S., Batista L.A., Novaes J.S. A influência do ciclo menstrual na flexibilidade em praticantes de ginástica de academia. Rev. Bras. De Med. Do Esporte. 2006;12:125–128. doi: 10.1590/S1517-86922006000300003.
    1. Findlay R.J., Macrae E.H.R., Whyte I.Y., Easton C., Forrest L.J. How the menstrual cycle and menstruation affect sporting performance: Experiences and perceptions of elite female rugby players. Br. J. Sports Med. 2020;54:1108. doi: 10.1136/bjsports-2019-101486.
    1. Hooper A.E.C., Bryan A.D., Eaton M. Menstrual cycle effects on perceived exertion and pain during exercise among sedentary women. J. Women Health (2002) 2011;20:439–446. doi: 10.1089/jwh.2010.2042.
    1. Crewther B.T., Cook C.J. A longitudinal analysis of salivary testosterone concentrations and competitiveness in elite and non-elite women athletes. Physiol. Behav. 2018;188:157–161. doi: 10.1016/j.physbeh.2018.02.012.
    1. Spieth P.M., Kubasch A.S., Penzlin A.I., Illigens B.M.-W., Barlinn K., Siepmann T. Randomized controlled trials - a matter of design. Neuropsychiatr. Dis. Treat. 2016;12:1341–1349. doi: 10.2147/NDT.S101938.
    1. Carneiro L., Afonso J., Ramirez-Campillo R., Murawska-Cialowciz E., Marques A., Clemente F.M. The Effects of Exclusively Resistance Training-Based Supervised Programs in People with Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health. 2020;17:6715. doi: 10.3390/ijerph17186715.
    1. Pereira H.M., Larson R.D., Bemben D.A. Menstrual Cycle Effects on Exercise-Induced Fatigability. Front. Physiol. 2020:11. doi: 10.3389/fphys.2020.00517.
    1. Blagrove R.C., Bruinvels G., Pedlar C.R. Variations in strength-related measures during the menstrual cycle in eumenorrheic women: A systematic review and meta-analysis. J. Sci. Med. Sport. 2020;23:1220–1227. doi: 10.1016/j.jsams.2020.04.022.
    1. Higgins J.P., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., Welch V. Cochrane Handbook for Systematic Reviews of Interventions. 2nd ed. John Wiley & Sons; Chichester, UK: 2019.
    1. Hayashida H., Shimura M., Sugama K., Kanda K., Suzuki K. Exercise-Induced Inflammation during Different Phases of the Menstrual Cycle. J. Physiother. Phys. Rehabil. 2016:1. doi: 10.4172/2573-0312.1000121.
    1. Suzuki K., Hayashida H. Effect of Exercise Intensity on Cell-Mediated Immunity. Sports (Basel) 2021;9:8. doi: 10.3390/sports9010008.
    1. Bernstein L., Ross R.K., Lobo R.A., Hanisch R., Krailo M.D., Henderson B.E. The effects of moderate physical activity on menstrual cycle patterns in adolescence: Implications for breast cancer prevention. Br. J. Cancer. 1987;55:681–685. doi: 10.1038/bjc.1987.139.
    1. Constantini N.W., Warren M.P. Menstrual dysfunction in swimmers: A distinct entity. J. Clin. Endocrinol. Metab. 1995;80:2740–2744. doi: 10.1210/jcem.80.9.7673417.
    1. McNulty K.L., Elliott-Sale K.J., Dolan E., Swinton P.A., Ansdell P., Goodall S., Hicks K.M. The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis. Sports Med. 2020;50:1813–1827. doi: 10.1007/s40279-020-01319-3.
    1. Minkin M.J. Menopause: Hormones, Lifestyle, and Optimizing Aging. Obstet. Gynecol. Clin. North Am. 2019;46:501–514. doi: 10.1016/j.ogc.2019.04.008.
    1. Bertone-Johnson E.R., Tworoger S.S., Hankinson S.E. Recreational Physical Activity and Steroid Hormone Levels in Postmenopausal Women. Am. J. Epidemiol. 2009;170:1095–1104. doi: 10.1093/aje/kwp254.
    1. Chan M.-F., Dowsett M., Folkerd E., Bingham S., Wareham N., Luben R., Khaw K.-T. Usual Physical Activity and Endogenous Sex Hormones in Postmenopausal Women: The European Prospective Investigation into Cancer–Norfolk Population Study. Cancer Epidemiol. Biomark. Prev. 2007;16:900. doi: 10.1158/1055-9965.EPI-06-0745.
    1. Kantyka J., Herman D., Roczniok R., Kuba L. Effects of aqua aerobics on body composition, body mass, lipid profile, and blood count in middle-aged sedentary women. Hum. Mov. 2015;16:9–14. doi: 10.1515/humo-2015-0020.
    1. McTiernan A., Wu L., Chen C., Chlebowski R., Mossavar-Rahmani Y., Modugno F., Women’s Health Initiative Investigators Relation of BMI and Physical Activity to Sex Hormones in Postmenopausal Women. Obesity. 2006;14:1662–1677. doi: 10.1038/oby.2006.191.
    1. De Roon M., May A.M., McTiernan A., Scholten R.J.P.M., Peeters P.H.M., Friedenreich C.M., Monninkhof E.M. Effect of exercise and/or reduced calorie dietary interventions on breast cancer-related endogenous sex hormones in healthy postmenopausal women. Breast Cancer Res. 2018;20:81. doi: 10.1186/s13058-018-1009-8.
    1. Van Gemert W.A.M., Schuit A.J., van der Palen J., May A.M., Iestra J.A., Wittink H., Monninkhof E.M. Effect of weight loss, with or without exercise, on body composition and sex hormones in postmenopausal women: The SHAPE-2 trial. Breast Cancer Res. 2015;17:120. doi: 10.1186/s13058-015-0633-9.
    1. Sipilä S., Poutamo J. Muscle performance, sex hormones and training in peri-menopausal and post-menopausal women. Scand. J. Med. Sci. Sports. 2003;13:19–25. doi: 10.1034/j.1600-0838.2003.20210.x.
    1. Bamman M.M., Hill V.J., Adams G.R., Haddad F., Wetzstein C.J., Gower B.A., Hunter G.R. Gender Differences in Resistance-Training-Induced Myofiber Hypertrophy Among Older Adults. J. Gerontol. Ser. A. 2003;58:B108–B116. doi: 10.1093/gerona/58.2.B108.
    1. Pöllänen E., Fey V., Törmäkangas T., Ronkainen P.H.A., Taaffe D.R., Takala T., Kovanen V. Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle. AGE. 2010;32:347–363. doi: 10.1007/s11357-010-9140-1.
    1. Ronkainen P.H.A., Kovanen V., Alén M., Pöllänen E., Palonen E.-M., Ankarberg-Lindgren C., Sipilä S. Postmenopausal hormone replacement therapy modifies skeletal muscle composition and function: A study with monozygotic twin pairs. J. Appl. Physiol. 2009;107:25–33. doi: 10.1152/japplphysiol.91518.2008.
    1. Sipilä S., Taaffe D.R., Cheng S., Puolakka J., Toivanen J., Suominen H. Effects of hormone replacement therapy and high-impact physical exercise on skeletal muscle in post-menopausal women: A randomized placebo-controlled study. Clin. Sci. (Lond.) 2001;101:147–157. doi: 10.1042/cs1010147.
    1. Javed A.A., Mayhew A.J., Shea A.K., Raina P. Association between Hormone Therapy and Muscle Mass in Postmenopausal Women: A Systematic Review and Meta-analysis. JAMA Netw. Open. 2019;2:e1910154. doi: 10.1001/jamanetworkopen.2019.10154.
    1. Tarnopolsky M.A., Zawada C., Richmond L.B., Carter S.L., Shearer J., Graham T., Phillips S.M. Gender differences in carbohydrate loading are related to energy intake. J. Appl. Physiol. 2001;91:225–230. doi: 10.1152/jappl.2001.91.1.225.
    1. Melin A.K., Heikura I.A., Tenforde A., Mountjoy M. Energy Availability in Athletics: Health, Performance, and Physique. Int. J. Sport Nutr. Exerc. Metab. 2019;29:152–164. doi: 10.1123/ijsnem.2018-0201.
    1. Benton M.J., Hutchins A.M., Dawes J.J. Effect of menstrual cycle on resting metabolism: A systematic review and meta-analysis. PLoS ONE. 2020;15:e0236025. doi: 10.1371/journal.pone.0236025.
    1. Burke L., Deakin V. Clinical Sports Nutrition. 5th ed. Australia McGraw-Hill Education; New York, NY, USA: 2015.
    1. Barr S.I., Janelle K.C., Prior J.C. Energy intakes are higher during the luteal phase of ovulatory menstrual cycles. Am. J. Clin. Nutr. 1995;61:39–43. doi: 10.1093/ajcn/61.1.39.
    1. Hirschberg A.L. Sex hormones, appetite and eating behaviour in women. Maturitas. 2012;71:248–256. doi: 10.1016/j.maturitas.2011.12.016.
    1. Carter S.L., Rennie C., Tarnopolsky M.A. Substrate utilization during endurance exercise in men and women after endurance training. Am. J. Physiol. Endocrinol. Metab. 2001;280:E898–E907. doi: 10.1152/ajpendo.2001.280.6.E898.
    1. Tarnopolsky L.J., MacDougall J.D., Atkinson S.A., Tarnopolsky M.A., Sutton J.R. Gender differences in substrate for endurance exercise. J. Appl. Physiol. 1990;68:302–308. doi: 10.1152/jappl.1990.68.1.302.
    1. Esbjörnsson-Liljedahl M., Sundberg C.J., Norman B., Jansson E. Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J. Appl. Physiol. 1999;87:1326–1332. doi: 10.1152/jappl.1999.87.4.1326.
    1. Geer E.B., Shen W. Gender differences in insulin resistance, body composition, and energy balance. Gend. Med. 2009;6(Suppl. 1):60–75. doi: 10.1016/j.genm.2009.02.002.
    1. Wallis G.A., Yeo S.E., Blannin A.K., Jeukendrup A.E. Dose-response effects of ingested carbohydrate on exercise metabolism in women. Med. Sci. Sports Exerc. 2007;39:131–138. doi: 10.1249/01.mss.0000241645.28467.d3.
    1. Jeukendrup A. A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Med. (Auckl. N. Z.) 2014;44(Suppl. 1):S25–S33. doi: 10.1007/s40279-014-0148-z.
    1. Walker J.L., Heigenhauser G.J., Hultman E., Spriet L.L. Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women. J. Appl. Physiol. (1985) 2000;88:2151–2158. doi: 10.1152/jappl.2000.88.6.2151.
    1. Rehrer N.J., McLay-Cooke R.T., Sims S.T. Nutritional strategies and sex hormone interactions in women. In: Hackney A.C., editor. Sex Hormones, Exercise and Women. Springer; Cham, Switzerland: 2017.
    1. Hashimoto H., Ishijima T., Hayashida H., Suzuki K., Higuchi M. Menstrual cycle phase and carbohydrate ingestion alter immune response following endurance exercise and high intensity time trial performance test under hot conditions. J. Int. Soc. Sports Nutr. 2014;11:39. doi: 10.1186/1550-2783-11-39.
    1. Chenevière X., Borrani F., Sangsue D., Gojanovic B., Malatesta D. Gender differences in whole-body fat oxidation kinetics during exercise. Appl. Physiol. Nutr. Metab. 2011;36:88–95. doi: 10.1139/H10-086.
    1. Devries M.C. Sex-based differences in endurance exercise muscle metabolism: Impact on exercise and nutritional strategies to optimize health and performance in women. Exp. Physiol. 2016;101:243–249. doi: 10.1113/EP085369.
    1. Devries M.C., Lowther S.A., Glover A.W., Hamadeh M.J., Tarnopolsky M.A. IMCL area density, but not IMCL utilization, is higher in women during moderate-intensity endurance exercise, compared with men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;293:R2336–R2342. doi: 10.1152/ajpregu.00510.2007.
    1. Hamadeh M.J., Devries M.C., Tarnopolsky M.A. Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise. J. Clin. Endocrinol. Metab. 2005;90:3592–3599. doi: 10.1210/jc.2004-1743.
    1. Murphy N.E., Carrigan C.T., Margolis L.M. High-Fat Ketogenic Diets and Physical Performance: A Systematic Review. Adv. Nutr. 2020 doi: 10.1093/advances/nmaa101.
    1. EFSA Panel on Dietetic Products, Nutrition, and Allergies Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. Efsa J. 2010;8:1461. doi: 10.2903/j.efsa.2010.1461.
    1. Lariviere F., Moussalli R., Garrel D.R. Increased leucine flux and leucine oxidation during the luteal phase of the menstrual cycle in women. (Pt 1)Am. J. Physiol. 1994;267:E422–E428. doi: 10.1152/ajpendo.1994.267.3.E422.
    1. Sawai A., Tsuzuki K., Yamauchi M., Kimura N., Tsushima T., Sugiyama K., Tochikubo O. The effects of estrogen and progesterone on plasma amino acids levels: Evidence from change plasma amino acids levels during the menstrual cycle in women. Biol. Rhythm Res. 2020;51:151–164. doi: 10.1080/09291016.2018.1526496.
    1. Bailey S.P., Zacher C.M., Mittleman K.D. Effect of menstrual cycle phase on carbohydrate supplementation during prolonged exercise to fatigue. J. Appl. Physiol. (1985) 2000;88:690–697. doi: 10.1152/jappl.2000.88.2.690.
    1. Kriengsinyos W., Wykes L.J., Goonewardene L.A., Ball R.O., Pencharz P.B. Phase of menstrual cycle affects lysine requirement in healthy women. Am. J. Physiol. Endocrinol. Metab. 2004;287:E489–E496. doi: 10.1152/ajpendo.00262.2003.
    1. Obayashi M., Shimomura Y., Nakai N., Jeoung N.H., Nagasaki M., Murakami T., Harris R.A. Estrogen controls branched-chain amino acid catabolism in female rats. J. Nutr. 2004;134:2628–2633. doi: 10.1093/jn/134.10.2628.
    1. Gorczyca A.M., Sjaarda L.A., Mitchell E.M., Perkins N.J., Schliep K.C., Wactawski-Wende J., Mumford S.L. Changes in macronutrient, micronutrient, and food group intakes throughout the menstrual cycle in healthy, premenopausal women. Eur. J. Nutr. 2016;55:1181–1188. doi: 10.1007/s00394-015-0931-0.
    1. Mercer D., Convit L., Condo D., Carr A.J., Hamilton D.L., Slater G., Snipe R.M.J. Protein Requirements of Pre-Menopausal Female Athletes: Systematic Literature Review. Nutrients. 2020;12:3527. doi: 10.3390/nu12113527.
    1. Thomas D.T., Erdman K.A., Burke L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016;48:543–568. doi: 10.1249/mss.0000000000000852.
    1. West D.W.D., Burd N.A., Churchward-Venne T.A., Camera D.M., Mitchell C.J., Baker S.K., Phillips S.M. Sex-based comparisons of myofibrillar protein synthesis after resistance exercise in the fed state. J. Appl. Physiol. 2012;112:1805–1813. doi: 10.1152/japplphysiol.00170.2012.
    1. Morton R.W., McGlory C., Phillips S.M. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front. Physiol. 2015;6:245. doi: 10.3389/fphys.2015.00245.
    1. Dalgaard L.B., Dalgas U., Andersen J.L., Rossen N.B., Møller A.B., Stødkilde-Jørgensen H., Hansen M. Influence of Oral Contraceptive Use on Adaptations to Resistance Training. Front. Physiol. 2019:10. doi: 10.3389/fphys.2019.00824.
    1. Burrows M., Peters C.E. The influence of oral contraceptives on athletic performance in female athletes. Sports Med. 2007;37:557–574. doi: 10.2165/00007256-200737070-00001.
    1. Elliott-Sale K.J., McNulty K.L., Ansdell P., Goodall S., Hicks K.M., Thomas K., Dolan E. The Effects of Oral Contraceptives on Exercise Performance in Women: A Systematic Review and Meta-analysis. Sports Med. 2020;50:1785–1812. doi: 10.1007/s40279-020-01317-5.
    1. Burkman R.T. Noncontraceptive effects of hormonal contraceptives: Bone mass, sexually transmitted disease and pelvic inflammatory disease, cardiovascular disease, menstrual function, and future fertility. Am. J. Obstet. Gynecol. 1994;170:1569–1575. doi: 10.1016/S0002-9378(12)91817-7.
    1. Schaumberg M.A., Emmerton L.M., Jenkins D.G., Burton N.W., Janse De Jonge X.A.K., Skinner T.L. Use of Oral Contraceptives to Manipulate Menstruation in Young, Physically Active Women. Int. J. Sports Physiol. Perform. 2018;13:82–87. doi: 10.1123/ijspp.2016-0689.
    1. Hackney A.C., Constantini N. Endocrinology of Physical Activity and Sport. 2nd ed. Humana Press; Totowa, NJ, USA: 2013.
    1. Tucker R., Collins M. What makes champions? A review of the relative contribution of genes and training to sporting success. Br. J. Sports Med. 2012;46:555. doi: 10.1136/bjsports-2011-090548.
    1. Thompson B., Almarjawi A., Sculley D., Janse De Jonge X.A.K. The Effect of the Menstrual Cycle and Oral Contraceptives on Acute Responses and Chronic Adaptations to Resistance Training: A Systematic Review of the Literature. Sports Med. 2020;50:171–185. doi: 10.1007/s40279-019-01219-1.

Source: PubMed

3
Subscribe