Taekwondo Enhances Cognitive Function as a Result of Increased Neurotrophic Growth Factors in Elderly Women

Su-Youn Cho, Hee-Tae Roh, Su-Youn Cho, Hee-Tae Roh

Abstract

The purpose of this study was to investigate the effects of regular taekwondo (TKD) training on physical fitness, neurotrophic growth factors, cerebral blood flow (CBF) velocity, and cognitive function in elderly women. Thirty-seven women aged 65 or older were randomly assigned to either TKD (n = 19) or control (n = 18) group. TKD training was performed at 50⁻80% maximum heart rate (HRmax) for 60 min, five times per week for 16 weeks. All participants underwent the following examinations before and after the intervention: Senior Fitness Test; serum levels of neurotrophic growth factors, including brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor-1 (IGF-1); systolic, diastolic, and mean blood flow velocity and pulsatility index of the middle cerebral artery using Doppler ultrasonography; Mini-Mental State Examination for dementia screening (MMSE-DS); and Stroop Color and Word Test (word, color, and color-word). In the TKD group, lower body strength and flexibility, aerobic endurance levels, BDNF, VEGF, and IGF-1 serum levels as well as the color-word test scores were significantly increased after as compared to before the intervention (p < 0.05). No statistically significant differences were found in cerebral blood flow velocities and the MMSE-DS score (p > 0.05). These findings suggest that regular TKD training may be effective in improving not only fitness but also cognitive function in elderly women. The latter effect may be due to increased neurotrophic growth factor levels.

Keywords: cerebral blood flow; cognition; elderly; neurotrophic factors; physical activity; taekwondo.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Birren J.E., Schaie K.W. Handbook of the Psychology of Aging. 6th ed. Academic Press; San Diego, CA, USA: 2005. pp. 41–122.
    1. Dumas J.A. Strategies for Preventing Cognitive Decline in Healthy Older Adults. Can. J. Psychiatry. 2017;62:754–760. doi: 10.1177/0706743717720691.
    1. Karssemeijer E.G.A., Aaronson J.A., Bossers W.J., Smits T., Olde Rikkert M.G.M., Kessels R.P.C. Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysis. Ageing Res. Rev. 2017;40:75–83. doi: 10.1016/j.arr.2017.09.003.
    1. Northey J.M., Cherbuin N., Pumpa K.L., Smee D.J., Rattray B. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. Br. J. Sports Med. 2018;52:154–160. doi: 10.1136/bjsports-2016-096587.
    1. Yaffe K., Barnes D., Nevitt M., Lui L.Y., Covinsky K. A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Arch. Intern. Med. 2001;161:1703–1708. doi: 10.1001/archinte.161.14.1703.
    1. Laurin D., Verreault R., Lindsay J., MacPherson K., Rockwood K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch. Neurol. 2001;58:498–504. doi: 10.1001/archneur.58.3.498.
    1. Colcombe S., Kramer A.F. Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychol. Sci. 2003;14:125–130. doi: 10.1111/1467-9280.t01-1-01430.
    1. Kramer A.F., Colcombe S. Fitness Effects on the Cognitive Function of Older Adults: A Meta-Analytic Study-Revisited. Perspect. Psychol. Sci. 2018;13:213–217. doi: 10.1177/1745691617707316.
    1. Maass A., Düzel S., Brigadski T., Goerke M., Becke A., Sobieray U., Neumann K., Lövdén M., Lindenberger U., Bäckman L., et al. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage. 2016;131:142–154. doi: 10.1016/j.neuroimage.2015.10.084.
    1. Loprinzi P.D., Frith E. A brief primer on the mediational role of BDNF in the exercise-memory link. Clin. Physiol. Funct. Imaging. 2019;39:9–14. doi: 10.1111/cpf.12522.
    1. Shetty A.K., Turner D.A. In vitro survival and differentiation of neurons derived from epidermal growth factor-responsive postnatal hippocampal stem cells: Inducing effects of brain-derived neurotrophic factor. J. Neurobiol. 1998;35:395–425. doi: 10.1002/(SICI)1097-4695(19980615)35:4<395::AID-NEU7>;2-U.
    1. Numakawa T., Odaka H., Adachi N. Actions of Brain-Derived Neurotrophic Factor and Glucocorticoid Stress in Neurogenesis. Int. J. Mol. Sci. 2017;18:2312. doi: 10.3390/ijms18112312.
    1. Voss M.W., Erickson K.I., Prakash R.S., Chaddock L., Kim J.S., Alves H., Szabo A., Phillips S.M., Wójcicki T.R., Mailey E.L., et al. Neurobiological markers of exercise-related brain plasticity in older adults. Brain Behav. Immun. 2013;28:90–99. doi: 10.1016/j.bbi.2012.10.021.
    1. Skriver K., Roig M., Lundbye-Jensen J., Pingel J., Helge J.W., Kiens B., Nielsen J.B. Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiol. Learn Mem. 2014;116:46–58. doi: 10.1016/j.nlm.2014.08.004.
    1. Ma C.L., Ma X.T., Wang J.J., Liu H., Chen Y.F., Yang Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behav. Brain Res. 2017;317:332–339. doi: 10.1016/j.bbr.2016.09.067.
    1. Llorens-Martín M., Torres-Alemán I., Trejo J.L. Growth factors as mediators of exercise actions on the brain. Neuromol. Med. 2008;10:99–107. doi: 10.1007/s12017-008-8026-1.
    1. Aberg N.D., Brywe K.G., Isgaard J. Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Sci. World J. 2006;6:53–80. doi: 10.1100/tsw.2006.22.
    1. Pase M.P., Grima N.A., Stough C., Scholey A., Pipingas A. Association of pulsatile and mean cerebral blood flow velocity with age and neuropsychological performance. Physiol. Behav. 2014;130:23–27. doi: 10.1016/j.physbeh.2014.03.015.
    1. Wierenga C.E., Hays C.C., Zlatar Z.Z. Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer’s disease. J. Alzheimers Dis. 2014;42:411–419. doi: 10.3233/JAD-141467.
    1. Grolimund P., Seiler R.W. Age dependence of the flow velocity in the basal cerebral arteries—A transcranial Doppler ultrasound study. Ultrasound Med. Biol. 1988;14:191–198. doi: 10.1016/0301-5629(88)90139-1.
    1. Sabayan B., Jansen S., Oleksik A.M., van Osch M.J., van Buchem M.A., van Vliet P., de Craen A.J., Westendorp R.G. Cerebrovascular hemodynamics in Alzheimer’s disease and vascular dementia: A meta-analysis of transcranial Doppler studies. Ageing Res. Rev. 2012;11:271–277. doi: 10.1016/j.arr.2011.12.009.
    1. Ruitenberg A., den Heijer T., Bakker S.L., van Swieten J.C., Koudstaal P.J., Hofman A., Breteler M.M. Cerebral hypoperfusion and clinical onset of dementia: The Rotterdam Study. Ann. Neurol. 2005;57:789–794. doi: 10.1002/ana.20493.
    1. Joris P.J., Mensink R.P., Adam T.C., Liu T.T. Cerebral Blood Flow Measurements in Adults: A Review on the Effects of Dietary Factors and Exercise. Nutrients. 2018;10:530. doi: 10.3390/nu10050530.
    1. Ainslie P.N., Cotter J.D., George K.P., Lucas S., Murrell C., Shave R., Thomas K.N., Williams M.J., Atkinson G. Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J. Physiol. 2008;586:4005–4010. doi: 10.1113/jphysiol.2008.158279.
    1. Anazodo U.C., Shoemaker J.K., Suskin N., Ssali T., Wang D.J., St Lawrence K.S. Impaired Cerebrovascular Function in Coronary Artery Disease Patients and Recovery Following Cardiac Rehabilitation. Front. Aging Neurosci. 2016;7:224. doi: 10.3389/fnagi.2015.00224.
    1. Chapman S.B., Aslan S., Spence J.S., Defina L.F., Keebler M.W., Didehbani N., Lu H. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front. Aging Neurosci. 2013;5:75. doi: 10.3389/fnagi.2013.00075.
    1. Fong S.S., Ng G.Y. Does Taekwondo training improve physical fitness? Phys. Ther. Sport. 2011;12:100–106. doi: 10.1016/j.ptsp.2010.07.001.
    1. Roh H.T., Cho S.Y., So W.Y. Taekwondo Training Improves Mood and Sociability in Children from Multicultural Families in South Korea: A Randomized Controlled Pilot Study. Int. J. Environ. Res. Public Health. 2018;15:757. doi: 10.3390/ijerph15040757.
    1. Kim Y.J., Cha E.J., Kim S.M., Kang K.D., Han D.H. The Effects of Taekwondo Training on Brain Connectivity and Body Intelligence. Psychiatry Investig. 2015;12:335–340. doi: 10.4306/pi.2015.12.3.335.
    1. Oztasyonar Y. Interaction between different sports branches such as taekwondo, box, athletes and serum brain derived neurotrophic factor levels. J. Sports Med. Phys. Fit. 2017;57:457–460.
    1. Rikli R.E., Jones C.J. Development and validation of a functional fitness test for community-residing older adults. J. Aging Phys. Act. 1999;6:127–159. doi: 10.1123/japa.7.2.129.
    1. Rikli R.E., Jones C.J. Senior Fitness Test Manual. 2nd ed. Human Kinetics; Champaign, IL, USA: 2013. pp. 1–102.
    1. Aaslid R., Markwalder T.M., Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 1982;57:769–774. doi: 10.3171/jns.1982.57.6.0769.
    1. Kim T.H., Jhoo J.H., Park J.H., Kim J.L., Ryu S.H., Moon S.W., Choo I.H., Lee D.W., Yoon J.C., Do Y.J., et al. Korean version of mini mental status examination for dementia screening and its’ short form. Psychiatry Investig. 2010;7:102–108. doi: 10.4306/pi.2010.7.2.102.
    1. Golden C., Freshwater S. A Manual for the Adult Stroop Color and Word Test. Stoelting; Chicago, IL, USA: 2002.
    1. Arevalo-Rodriguez I., Smailagic N., Roqué I., Figuls M., Ciapponi A., Sanchez-Perez E., Giannakou A., Pedraza O.L., Bonfill Cosp X., Cullum S. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI) Cochrane Database Syst. Rev. 2015;5:CD010783.
    1. Daskalopoulou C., Stubbs B., Kralj C., Koukounari A., Prince M., Prina A.M. Physical activity and healthy ageing: A systematic review and meta-analysis of longitudinal cohort studies. Ageing Res. Rev. 2017;38:6–17. doi: 10.1016/j.arr.2017.06.003.
    1. Cartee G.D., Hepple R.T., Bamman M.M., Zierath J.R. Exercise Promotes Healthy Aging of Skeletal Muscle. Cell Metab. 2016;23:1034–1047. doi: 10.1016/j.cmet.2016.05.007.
    1. Viña J., Rodriguez-Mañas L., Salvador-Pascual A., Tarazona-Santabalbina F.J., Gomez-Cabrera M.C. Exercise: The lifelong supplement for healthy ageing and slowing down the onset of frailty. J. Physiol. 2016;594:1989–1999. doi: 10.1113/JP270536.
    1. Kim H.B., Stebbins C.L., Chai J.H., Song J.K. Taekwondo training and fitness in female adolescents. J. Sports Sci. 2011;29:133–138. doi: 10.1080/02640414.2010.525519.
    1. Toskovic N.N., Blessing D., Williford H.N. Physiologic profile of recreational male and female novice and experienced Tae Kwon Do practitioners. J. Sports Med. Phys. Fit. 2004;44:164–172.
    1. Brudnak M.A., Dundero D., Van Hecke F.M. Are the ‘hard’ martial arts, such as the Korean martial art, TaeKwon-Do, of benefit to senior citizens? Med. Hypotheses. 2002;59:485–491. doi: 10.1016/S0306-9877(02)00203-7.
    1. Cromwell R.L., Meyers P.M., Meyers P.E., Newton R.A. Tae Kwon Do: An effective exercise for improving balance and walking ability in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2007;62:641–646. doi: 10.1093/gerona/62.6.641.
    1. American College of Sports Medicine . ACSM’s Guidelines for Exercise Testing and Prescription. 7th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2006. pp. 133–173.
    1. Bridge C.A., Jones M.A., Hitchen P., Sanchez X. Heart rate responses to Taekwondo training in experienced practitioners. J. Strength Cond. Res. 2007;21:718–723.
    1. Huang T., Larsen K.T., Ried-Larsen M., Møller N.C., Andersen L.B. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scand. J. Med. Sci. Sports. 2014;24:1–10. doi: 10.1111/sms.12069.
    1. Loprinzi P.D., Frith E., Edwards M.K. Resistance exercise and episodic memory function: A systematic review. Clin. Physiol. Funct. Imaging. 2018;38:923–929. doi: 10.1111/cpf.12507.
    1. Roh H.T., Cho S.Y., Yoon H.G., So W.Y. Effect of Exercise Intensity on Neurotrophic Factors and Blood-Brain Barrier Permeability Induced by Oxidative-Nitrosative Stress in Male College Students. Int. J. Sport Nutr. Exerc. Metab. 2017;27:239–246. doi: 10.1123/ijsnem.2016-0009.
    1. Cho S.Y., So W.Y., Roh H.T. The Effects of Taekwondo Training on Peripheral Neuroplasticity-Related Growth Factors, Cerebral Blood Flow Velocity, and Cognitive Functions in Healthy Children: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health. 2017;14:454. doi: 10.3390/ijerph14050454.
    1. Kim H.J., Song B.K., So B., Lee O., Song W., Kim Y. Increase of circulating BDNF levels and its relation to improvement of physical fitness following 12 weeks of combined exercise in chronic patients with schizophrenia: A pilot study. Psychiatry Res. 2014;220:792–796. doi: 10.1016/j.psychres.2014.09.020.
    1. Whiteman A.S., Young D.E., He X., Chen T.C., Wagenaar R.C., Stern C.E., Schon K. Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behav. Brain Res. 2014;259:302–312. doi: 10.1016/j.bbr.2013.11.023.
    1. Carro E., Nuñez A., Busiguina S., Torres-Aleman I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 2000;20:2926–2933. doi: 10.1523/JNEUROSCI.20-08-02926.2000.
    1. Lopez-Lopez C., LeRoith D., Torres-Aleman I. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc. Natl. Acad. Sci. USA. 2004;101:9833–9838. doi: 10.1073/pnas.0400337101.
    1. Dennis E.L., Thompson P.M. Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol. Rev. 2014;24:49–62. doi: 10.1007/s11065-014-9249-6.
    1. Boecker H., Drzezga A. A perspective on the future role of brain pet imaging in exercise science. Neuroimage. 2016;131:73–80. doi: 10.1016/j.neuroimage.2015.10.021.
    1. Smith K.J., Ainslie P.N. Regulation of cerebral blood flow and metabolism during exercise. Exp. Physiol. 2017;102:1356–1371. doi: 10.1113/EP086249.
    1. Washio T., Sasaki H., Ogoh S. Transcranial Doppler-determined change in posterior cerebral artery blood flow velocity does not reflect vertebral artery blood flow during exercise. Am. J. Physiol. Heart Circ. Physiol. 2017;312:827–831. doi: 10.1152/ajpheart.00676.2016.
    1. Murrell C.J., Cotter J.D., Thomas K.N., Lucas S.J., Williams M.J., Ainslie P.N. Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: Effect of age and 12-week exercise training. Age. 2013;35:905–920. doi: 10.1007/s11357-012-9414-x.
    1. Barnes D.E., Yaffe K., Satariano W.A., Tager I.B. A longitudinal study of cardiorespiratory fitness and cognitive function in healthy older adults. J. Am. Geriatr. Soc. 2003;51:459–465. doi: 10.1046/j.1532-5415.2003.51153.x.
    1. Farrell S.W., Abramowitz A.R., Willis B.L., Barlow C.E., Weiner M., Falkowski J., Leonard D., Pavlovic A., DeFina L.F. The Relationship between Cardiorespiratory Fitness and Montreal Cognitive Assessment Scores in Older Adults. Gerontology. 2018;64:440–445. doi: 10.1159/000489336.

Source: PubMed

3
Subscribe