No effects of a 4-week post-exercise sauna bathing on targeted gut microbiota and intestinal barrier function, and hsCRP in healthy men: a pilot randomized controlled trial

Joanna Karolkiewicz, David C Nieman, Tomasz Cisoń, Joanna Szurkowska, Mirosława Gałęcka, Dariusz Sitkowski, Zbigniew Szygula, Joanna Karolkiewicz, David C Nieman, Tomasz Cisoń, Joanna Szurkowska, Mirosława Gałęcka, Dariusz Sitkowski, Zbigniew Szygula

Abstract

Background: Body temperature fluctuations induced by acute exercise bouts may influence the intestinal barrier with related effects on epithelial permeability, immune responses, and release of metabolites produced by the gut microbiota. This study evaluated the effects of post-exercise sauna bathing in young men undergoing endurance training on gut bacteria inflammation and intestinal barrier function.

Methods: Fifteen (15) untrained males aged 22 ± 1.5 years were randomly assigned to exercise training (ET) with or without post-exercise sauna treatments (S). Participants in the group ET + S (n = 8) exercised 60 min, 3 times per week, on a bicycle ergometer followed by a 30-min dry Finish sauna treatment. The control group (ET, n = 7) engaged in the same exercise training program without the sauna treatments. Blood and stool samples were collected before and after the 4-week training program. Blood samples were analysed for the concentration of high-sensitivity C-reactive protein (hsCRP) and complete blood counts. Stool samples were analysed for pH, quantitative and qualitative measures of targeted bacteria, zonulin, and secretory immunoglobulin A.

Results: Interaction effects revealed no differences in the pattern of change over time between groups for the abundance of selected gut microbiome bacteria and stool pH, zonulin, sIgA, and hsCRP. Pre- and post-study fecal concentrations of Bifidobacterium spp., Faecalibacterium prausnitzii, and Akkermansia muciniphila were below reference values for these bacteria in both groups.

Conclusions: The combination of 4-weeks exercise followed by passive heat exposure did not have a measurable influence on targeted gut microbiota, intestinal barrier function, and hsCRP levels in young males.

Trial registration: The study was retrospectively registered in the clinical trials registry (Clinicaltrials.gov) under the trial registration number: NCT05277597. Release Date: March 11, 2022.

Keywords: Exercise; Gut microbiota; Intestinal barrier function; Sauna bathing.

Conflict of interest statement

The authors declares that they have no competing interests.

© 2022. The Author(s).

References

    1. Karl PJ, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG, Doherty LA, et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front Microbiol. 2018;9:1–32. doi: 10.3389/fmicb.2018.02013.
    1. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63(12):1913–1920. doi: 10.1136/gutjnl-2013-306541.
    1. Jang LG, Choi G, Kim SW, Kim BY, Lee S, Park H. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. J Int Soc Sports Nutr. 2019;16(1):1–10. doi: 10.1186/s12970-019-0290-y.
    1. van Wijck K, Lenaerts K, van Loon LJC, Peters WHM, Buurman WA, Dejong CHC. Exercise-Induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One. 2011;6(7):e22366. doi: 10.1371/journal.pone.0022366.
    1. Dokladny K, Zuhl MN, Moseley PL. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J Appl Physiol. 2016;120(6):692–701. doi: 10.1152/japplphysiol.00536.2015.
    1. Costa RJS, Gaskell SK, McCubbin AJ, Snipe RMJ. Exertional-heat stress-associated gastrointestinal perturbations during Olympic sports: management strategies for athletes preparing and competing in the 2020 Tokyo Olympic games. Temperature [Internet] 2020;7(1):58–88. doi: 10.1080/23328940.2019.1597676.
    1. Ikari A, Nakano M, Suketa Y, Harada H, Takagi K. Reorganization of ZO-1 by sodium-dependent glucose transporter activation after heat stress in LLC-PK1 cells. J Cell Physiol. 2005;203(3):471–478. doi: 10.1002/jcp.20234.
    1. Choi SJ, Kim YS, Chae JR, Cho HK, Kim TH, Sohn YW, et al. Effects of ranitidine for exercise induced gastric mucosal changes and bleeding. World J Gastroenterol. 2006;12(16):2579–2583. doi: 10.3748/wjg.v12.i16.2579.
    1. Roca Rubio MF, Eriksson U, Brummer RJ, König J. Sauna dehydration as a new physiological challenge model for intestinal barrier function. Sci Rep [Internet] 2021;11(1):1–13. doi: 10.1038/s41598-021-94814-0.
    1. Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2018;67(4):625–633.
    1. Périard JD, Travers GJS, Racinais S, Sawka MN. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci Basic Clin [Internet] 2016;196:52–62. doi: 10.1016/j.autneu.2016.02.002.
    1. Mero A, Tornberg J, Mäntykoski M, Puurtinen R. Effects of far-infrared sauna bathing on recovery from strength and endurance training sessions in men. Springerplus. 2015;4(1):1–7. doi: 10.1186/s40064-015-1093-5.
    1. Snipe RMJ, Khoo A, Kitic CM, Gibson PR, Costa RJS. The impact of mild heat stress during prolonged running on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profiles. Int J Sports Med. 2018;39(4):255–263. doi: 10.1055/s-0043-122742.
    1. Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 2017;11(9):821–834. doi: 10.1080/17474124.2017.1343143.
    1. Sitkowski D, Cisoń T, Szygula Z, Surała O, Starczewski M, Sadowska D, et al. Hematological adaptations to post-exercise sauna bathing with no fluid intake: a randomized cross-over study. Res Q Exerc Sport [Internet] 2021;5:1–9. doi: 10.1080/02701367.2021.1921684.
    1. Lambert GP. Intestinal barrier dysfunction, endotoxemia, and gastrointestinal symptoms: the “canary in the coal mine” during exercise heat - stress? BT - thermoregulation and human performance: physiological and biological aspects. Thermoregul Hum Perform Physiol Biol Asp [Internet] 2008;53(5):61–73.
    1. Selkirk GA, McLellan TM, Wright HE, Rhind SG. Mild endotoxemia, NF-κB translocation, and cytokine increase during exertional heat stress in trained and untrained individuals. Am J Physiol - Regul Integr Comp Physiol. 2008;295(2):611–623. doi: 10.1152/ajpregu.00917.2007.
    1. Shing CM, Peake JM, Lim CL, Briskey D, Walsh NP, Fortes MB, et al. Effects of probiotics supplementation on gastrointestinal permeability, inflammation and exercise performance in the heat. Eur J Appl Physiol. 2014;114(1):93–103. doi: 10.1007/s00421-013-2748-y.
    1. Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91(1):151–175. doi: 10.1152/physrev.00003.2008.
    1. Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers. 2017;5(4):e1373208. doi: 10.1080/21688370.2017.1373208.
    1. Biedunkiewicz A. Moulds isolated from the upper sections of the respiratory and alimentary tracts of healthy veterinary medicine students. Med Pr. 2011;62(3):259–25967.
    1. Ortiz-Alvarez L, Xu H, Martinez-Tellez B. Influence of exercise on the human gut microbiota of healthy adults: a systematic review. Clin Transl Gastroenterol. 2020;11(2):e00126. doi: 10.14309/ctg.0000000000000126.
    1. Bycura D, Santos AC, Shiffer A, Kyman S, Winfree K, Sutliffe J, et al. Impact of different exercise modalities on the human gut microbiome. Sports. 2021;9(2):1–22. doi: 10.3390/sports9020014.
    1. Chevalier C, Stojanović O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163(6):1360–1374. doi: 10.1016/j.cell.2015.11.004.
    1. Chevalier C, Kieser S, Çolakoğlu M, Hadadi N, Brun J, Rigo D, et al. Warmth prevents bone loss through the gut microbiota. Cell Metab. 2020;32(4):575–590.e7. doi: 10.1016/j.cmet.2020.08.012.
    1. Zhang XY, Sukhchuluun G, Bo TB, Chi QS, Yang JJ, Chen B, et al. Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure. Microbiome. 2018;6(1):1–14. doi: 10.1186/s40168-017-0383-2.
    1. Demirci M, Tokman HB, Uysal HK, Demiryas S, Karakullukcu A, Saribas S, et al. Reduced Akkermansia muciniphila and Faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma. Allergol Immunopathol (Madr) [Internet] 2019;47(4):365–71. doi: 10.1016/j.aller.2018.12.009.
    1. Keohane DM, Woods T, O’Connor P, Underwood S, Cronin O, Whiston R, et al. Four men in a boat: ultra-endurance exercise alters the gut microbiome. J Sci Med Sport [Internet] 2019;22(9):1059–64. doi: 10.1016/j.jsams.2019.04.004.
    1. Rengarajan S, Knoop KA, Rengarajan A, Chai JN, Grajales-Reyes JG, Samineni VK, et al. A potential role for stress-induced microbial alterations in IgA-associated irritable bowel syndrome with diarrhea. Cell Rep Med [Internet] 2020;1(7):100124. doi: 10.1016/j.xcrm.2020.100124.
    1. Verhoog S, Taneri PE, Díaz ZMR, Marques-Vidal P, Troup JP, Bally L, et al. Dietary factors and modulation of bacteria strains of akkermansia muciniphila and faecalibacterium prausnitzii: a systematic review. Nutrients. 2019;11(7):1–20. doi: 10.3390/nu11071565.
    1. Ilhan ZE, Marcus AK, Kang D-W, Rittmann BE, Krajmalnik-Brown R. pH-mediated microbial and metabolic interactions in fecal enrichment cultures. mSphere. 2017;2(3):1–12. doi: 10.1128/mSphere.00047-17.
    1. Osuka A, Shimizu K, Ogura H, Tasaki O, Hamasaki T, Asahara T, et al. Prognostic impact of fecal pH in critically ill patients. Crit Care [Internet] 2012;16(4):R119. doi: 10.1186/cc11413.
    1. Geerlings SY, Kostopoulos I, de Vos WM, Belzer C. Akkermansia muciniphila in the human gastrointestinal tract: when, where, and how? Microorganisms. 2018;6(3):1–26. doi: 10.3390/microorganisms6030075.
    1. Clemente MG, De Virgiliis S, Kang JS, Macatagney R, Musu MP, Di Pierro MR, et al. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut. 2003;52(2):218–223. doi: 10.1136/gut.52.2.218.
    1. Lobionda S, Sittipo P, Kwon HY, Lee YK. The role of gut microbiota in intestinal inflammation with respect to diet and extrinsic stressors. Microorganisms. 2019;7(8):271. doi: 10.3390/microorganisms7080271.
    1. Petersen LM, Bautista EJ, Nguyen H, Hanson BM, Chen L, Lek SH, et al. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome. 2017;5(1):1–13. doi: 10.1186/s40168-017-0320-4.

Source: PubMed

3
Subscribe