Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours

Valerie Voon, Thomas B Mole, Paula Banca, Laura Porter, Laurel Morris, Simon Mitchell, Tatyana R Lapa, Judy Karr, Neil A Harrison, Marc N Potenza, Michael Irvine, Valerie Voon, Thomas B Mole, Paula Banca, Laura Porter, Laurel Morris, Simon Mitchell, Tatyana R Lapa, Judy Karr, Neil A Harrison, Marc N Potenza, Michael Irvine

Abstract

Although compulsive sexual behaviour (CSB) has been conceptualized as a "behavioural" addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Condition contrasts.
Figure 1. Condition contrasts.
The glass brains and coronal images show the effects across groups of the following contrasts: explicit – exciting (left, top row), erotic – exciting (middle, middle row) and money – exciting (right, bottom row). The images are shown at whole-brain FWE-corrected P

Figure 2. Explicit versus exciting cues.

The…

Figure 2. Explicit versus exciting cues.

The coronal views represent the group-byvideo-type interaction of subjects…

Figure 2. Explicit versus exciting cues.
The coronal views represent the group-byvideo-type interaction of subjects with compulsive sexual behaviour (CSB)>healthy volunteers (HV) contrasting explicit>exciting cues. The images are shown as regions of interest at P

Figure 3. Sexual desire.

A. Subjective desire…

Figure 3. Sexual desire.

A. Subjective desire and liking scores to video types in subjects…

Figure 3. Sexual desire.
A. Subjective desire and liking scores to video types in subjects with compulsive sexual behaviours (CSB) and healthy volunteer (HV) participants. There was a significant group-by-video-type-by-desire/liking interaction. Error bars represent SEM. *p

Figure 4. Age.

The coronal view shows…

Figure 4. Age.

The coronal view shows the age covariate for explicit videos in subjects…

Figure 4. Age.
The coronal view shows the age covariate for explicit videos in subjects with Compulsive Sexual Behaviours (CSB) with a healthy volunteer (HV) exclusive mask. The graph shows the corresponding regression analysis for the ventral striatal parameter estimate (PE) and age in years. The image is shown as a region of interest at P
Similar articles
Cited by
References
    1. Fong TW (2006) Understanding and managing compulsive sexual behaviors. Psychiatry (Edgmont) 3: 51–58. - PMC - PubMed
    1. Odlaug BL, Grant JE (2010) Impulse-control disorders in a college sample: results from the self-administered Minnesota Impulse Disorders Interview (MIDI). Prim Care Companion J Clin Psychiatry 12. - PMC - PubMed
    1. Odlaug BL, Lust K, Schreiber LR, Christenson G, Derbyshire K, et al. (2013) Compulsive sexual behavior in young adults. Ann Clin Psychiatry 25: 193–200. - PubMed
    1. Grant JE, Levine L, Kim D, Potenza MN (2005) Impulse control disorders in adult psychiatric inpatients. Am J Psychiatry 162: 2184–2188. - PubMed
    1. Reid RC (2013) Personal perspectives on hypersexual disorder. Sexual Addiction and Compulsivity 20: 14.
Show all 68 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Figure 2. Explicit versus exciting cues.
Figure 2. Explicit versus exciting cues.
The coronal views represent the group-byvideo-type interaction of subjects with compulsive sexual behaviour (CSB)>healthy volunteers (HV) contrasting explicit>exciting cues. The images are shown as regions of interest at P

Figure 3. Sexual desire.

A. Subjective desire…

Figure 3. Sexual desire.

A. Subjective desire and liking scores to video types in subjects…

Figure 3. Sexual desire.
A. Subjective desire and liking scores to video types in subjects with compulsive sexual behaviours (CSB) and healthy volunteer (HV) participants. There was a significant group-by-video-type-by-desire/liking interaction. Error bars represent SEM. *p

Figure 4. Age.

The coronal view shows…

Figure 4. Age.

The coronal view shows the age covariate for explicit videos in subjects…

Figure 4. Age.
The coronal view shows the age covariate for explicit videos in subjects with Compulsive Sexual Behaviours (CSB) with a healthy volunteer (HV) exclusive mask. The graph shows the corresponding regression analysis for the ventral striatal parameter estimate (PE) and age in years. The image is shown as a region of interest at P
Similar articles
Cited by
References
    1. Fong TW (2006) Understanding and managing compulsive sexual behaviors. Psychiatry (Edgmont) 3: 51–58. - PMC - PubMed
    1. Odlaug BL, Grant JE (2010) Impulse-control disorders in a college sample: results from the self-administered Minnesota Impulse Disorders Interview (MIDI). Prim Care Companion J Clin Psychiatry 12. - PMC - PubMed
    1. Odlaug BL, Lust K, Schreiber LR, Christenson G, Derbyshire K, et al. (2013) Compulsive sexual behavior in young adults. Ann Clin Psychiatry 25: 193–200. - PubMed
    1. Grant JE, Levine L, Kim D, Potenza MN (2005) Impulse control disorders in adult psychiatric inpatients. Am J Psychiatry 162: 2184–2188. - PubMed
    1. Reid RC (2013) Personal perspectives on hypersexual disorder. Sexual Addiction and Compulsivity 20: 14.
Show all 68 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Figure 3. Sexual desire.
Figure 3. Sexual desire.
A. Subjective desire and liking scores to video types in subjects with compulsive sexual behaviours (CSB) and healthy volunteer (HV) participants. There was a significant group-by-video-type-by-desire/liking interaction. Error bars represent SEM. *p

Figure 4. Age.

The coronal view shows…

Figure 4. Age.

The coronal view shows the age covariate for explicit videos in subjects…

Figure 4. Age.
The coronal view shows the age covariate for explicit videos in subjects with Compulsive Sexual Behaviours (CSB) with a healthy volunteer (HV) exclusive mask. The graph shows the corresponding regression analysis for the ventral striatal parameter estimate (PE) and age in years. The image is shown as a region of interest at P
Similar articles
Cited by
References
    1. Fong TW (2006) Understanding and managing compulsive sexual behaviors. Psychiatry (Edgmont) 3: 51–58. - PMC - PubMed
    1. Odlaug BL, Grant JE (2010) Impulse-control disorders in a college sample: results from the self-administered Minnesota Impulse Disorders Interview (MIDI). Prim Care Companion J Clin Psychiatry 12. - PMC - PubMed
    1. Odlaug BL, Lust K, Schreiber LR, Christenson G, Derbyshire K, et al. (2013) Compulsive sexual behavior in young adults. Ann Clin Psychiatry 25: 193–200. - PubMed
    1. Grant JE, Levine L, Kim D, Potenza MN (2005) Impulse control disorders in adult psychiatric inpatients. Am J Psychiatry 162: 2184–2188. - PubMed
    1. Reid RC (2013) Personal perspectives on hypersexual disorder. Sexual Addiction and Compulsivity 20: 14.
Show all 68 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 4. Age.
Figure 4. Age.
The coronal view shows the age covariate for explicit videos in subjects with Compulsive Sexual Behaviours (CSB) with a healthy volunteer (HV) exclusive mask. The graph shows the corresponding regression analysis for the ventral striatal parameter estimate (PE) and age in years. The image is shown as a region of interest at P

References

    1. Fong TW (2006) Understanding and managing compulsive sexual behaviors. Psychiatry (Edgmont) 3: 51–58.
    1. Odlaug BL, Grant JE (2010) Impulse-control disorders in a college sample: results from the self-administered Minnesota Impulse Disorders Interview (MIDI). Prim Care Companion J Clin Psychiatry 12.
    1. Odlaug BL, Lust K, Schreiber LR, Christenson G, Derbyshire K, et al. (2013) Compulsive sexual behavior in young adults. Ann Clin Psychiatry 25: 193–200.
    1. Grant JE, Levine L, Kim D, Potenza MN (2005) Impulse control disorders in adult psychiatric inpatients. Am J Psychiatry 162: 2184–2188.
    1. Reid RC (2013) Personal perspectives on hypersexual disorder. Sexual Addiction and Compulsivity 20: 14.
    1. Kafka MP (2010) Hypersexual disorder: a proposed diagnosis for DSM-V. Arch Sex Behav 39: 377–400.
    1. Kor A, Fogel Y, Reid RC, Potenza MN (2013) Should Hypersexual Disorder be Classified as an Addiction? Sex Addict Compulsivity 20.
    1. Association AP (2013) Diagnostic and statistical manual of mental disorders. Arlington, VA: American Psychiatric Publishing.
    1. Petry NM, O'Brien CP (2013) Internet gaming disorder and the DSM-5. Addiction 108: 1186–1187.
    1. Childress AR, Hole AV, Ehrman RN, Robbins SJ, McLellan AT, et al. (1993) Cue reactivity and cue reactivity interventions in drug dependence. NIDA Res Monogr 137: 73–95.
    1. Kuhn S, Gallinat J (2011) Common biology of craving across legal and illegal drugs - a quantitative meta-analysis of cue-reactivity brain response. Eur J Neurosci 33: 1318–1326.
    1. Robinson TE, Berridge KC (2008) Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci 363: 3137–3146.
    1. Kuhn S, Gallinat J (2011) A quantitative meta-analysis on cue-induced male sexual arousal. J Sex Med 8: 2269–2275.
    1. Mouras H, Stoleru S, Bittoun J, Glutron D, Pelegrini-Issac M, et al. (2003) Brain processing of visual sexual stimuli in healthy men: a functional magnetic resonance imaging study. Neuroimage 20: 855–869.
    1. Arnow BA, Desmond JE, Banner LL, Glover GH, Solomon A, et al. (2002) Brain activation and sexual arousal in healthy, heterosexual males. Brain 125: 1014–1023.
    1. Stoleru S, Gregoire MC, Gerard D, Decety J, Lafarge E, et al. (1999) Neuroanatomical correlates of visually evoked sexual arousal in human males. Arch Sex Behav 28: 1–21.
    1. Bocher M, Chisin R, Parag Y, Freedman N, Meir Weil Y, et al. (2001) Cerebral activation associated with sexual arousal in response to a pornographic clip: A 15O-H2O PET study in heterosexual men. Neuroimage 14: 105–117.
    1. Redoute J, Stoleru S, Gregoire MC, Costes N, Cinotti L, et al. (2000) Brain processing of visual sexual stimuli in human males. Hum Brain Mapp 11: 162–177.
    1. Paul T, Schiffer B, Zwarg T, Kruger TH, Karama S, et al. (2008) Brain response to visual sexual stimuli in heterosexual and homosexual males. Hum Brain Mapp 29: 726–735.
    1. Ferretti A, Caulo M, Del Gratta C, Di Matteo R, Merla A, et al. (2005) Dynamics of male sexual arousal: distinct components of brain activation revealed by fMRI. Neuroimage 26: 1086–1096.
    1. Hamann S, Herman RA, Nolan CL, Wallen K (2004) Men and women differ in amygdala response to visual sexual stimuli. Nat Neurosci 7: 411–416.
    1. Sescousse G, Caldu X, Segura B, Dreher JC (2013) Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci Biobehav Rev 37: 681–696.
    1. Kuhn S, Gallinat J (2014) Brain Structure and Functional Connectivity Associated With Pornography Consumption: The Brain on Porn. JAMA Psychiatry
    1. Miner MH, Raymond N, Mueller BA, Lloyd M, Lim KO (2009) Preliminary investigation of the impulsive and neuroanatomical characteristics of compulsive sexual behavior. Psychiatry Res 174: 146–151.
    1. Steele VR, Staley C, Fong T, Prause N (2013) Sexual desire, not hypersexuality, is related to neurophysiological responses elicited by sexual images. Socioaffect Neurosci Psychol 3: 20770.
    1. Voon V, Hassan K, Zurowski M, de Souza M, Thomsen T, et al. (2006) Prevalence of repetitive and reward-seeking behaviors in Parkinson disease. Neurology 67: 1254–1257.
    1. Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, et al. (2010) Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol 67: 589–595.
    1. Kataoka H, Shinkai T, Inoue M, Satoshi U (2009) Increased medial temporal blood flow in Parkinson's disease with pathological hypersexuality. Mov Disord 24: 471–473.
    1. Politis M, Loane C, Wu K, O'Sullivan SS, Woodhead Z, et al. (2013) Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson's disease. Brain 136: 400–411.
    1. Perry DC, Sturm VE, Seeley WW, Miller BL, Kramer JH, et al. (2014) Anatomical correlates of reward-seeking behaviours in behavioural variant frontotemporal dementia. Brain
    1. Somerville LH, Casey BJ (2010) Developmental neurobiology of cognitive control and motivational systems. Curr Opin Neurobiol 20: 236–241.
    1. Delmonico DL, Miller JA (2003) The Internet Sex Screening Test: a comparison of sexual compulsives versus non-sexual compulsives. Sexual and Relationship Therapy 18.
    1. Reid RC, Carpenter BN, Hook JN, Garos S, Manning JC, et al. (2012) Report of findings in a DSM-5 field trial for hypersexual disorder. J Sex Med 9: 2868–2877.
    1. Carnes P, Delmonico DL, Griffin E (2001) In the Shadows of the Net: Breaking Free from Compulsive Online Sexual Behaviour, 2nd Ed. Center City, Minnesota: Hazelden
    1. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, et al. (1998) The Mini-International Neuropsychiatric Interview (MINI): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry 59: 22–33.
    1. Whiteside SP, Lynam DR (2001) The five factor model and impulsivity: using a structural model of personality to understand impulsivity. Personality and Individual Differences 30: 669–689.
    1. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4: 561–571.
    1. Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA (1983) Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.
    1. Saunders JB, Aasland OG, Babor TF, de la Fuente JR, Grant M (1993) Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption–II. Addiction 88: 791–804.
    1. Young KS (1998) Internet addiction: The emergence of a new clinical disorder. Cyberpsychology & Behavior 1: 237–244.
    1. Meerkerk GJ, Van Den Eijnden RJJM, Vermulst AA, Garretsen HFL (2009) The Compulsive Internet Use Scale (CIUS): Some Psychometric Properties. Cyberpsychology & Behavior 12: 1–6.
    1. Nelson HE (1982) National Adult Reading Test. Windosr, UK: NFER-Nelson.
    1. McGahuey CA, Gelenberg AJ, Laukes CA, Moreno FA, Delgado PL, et al. (2000) The Arizona Sexual Experience Scale (ASEX): reliability and validity. J Sex Marital Ther 26: 25–40.
    1. Murray GK, Corlett PR, Clark L, Pessiglione M, Blackwell AD, et al. (2008) Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry 13: 239, 267–276.
    1. Martinez D, Slifstein M, Broft A, Mawlawi O, Hwang DR, et al. (2003) Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 23: 285–300.
    1. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19: 1233–1239.
    1. Williams SM, Goldman-Rakic PS (1998) Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 8: 321–345.
    1. Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, et al. (2011) The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci 12: 154–167.
    1. Shenhav A, Botvinick MM, Cohen JD (2013) The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79: 217–240.
    1. Wallis JD, Kennerley SW (2010) Heterogeneous reward signals in prefrontal cortex. Curr Opin Neurobiol 20: 191–198.
    1. Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE (2011) Frontal cortex and reward-guided learning and decision-making. Neuron 70: 1054–1069.
    1. Hayden BY, Platt ML (2010) Neurons in anterior cingulate cortex multiplex information about reward and action. J Neurosci 30: 3339–3346.
    1. Rudebeck PH, Behrens TE, Kennerley SW, Baxter MG, Buckley MJ, et al. (2008) Frontal cortex subregions play distinct roles in choices between actions and stimuli. J Neurosci 28: 13775–13785.
    1. Warren CA, McDonough BE (1999) Event-related brain potentials as indicators of smoking cue-reactivity. Clin Neurophysiol 110: 1570–1584.
    1. Heinze M, Wolfling K, Grusser SM (2007) Cue-induced auditory evoked potentials in alcoholism. Clin Neurophysiol 118: 856–862.
    1. Lubman DI, Allen NB, Peters LA, Deakin JF (2008) Electrophysiological evidence that drug cues have greater salience than other affective stimuli in opiate addiction. J Psychopharmacol 22: 836–842.
    1. Euser AS, Arends LR, Evans BE, Greaves-Lord K, Huizink AC, et al. (2012) The P300 event-related brain potential as a neurobiological endophenotype for substance use disorders: a meta-analytic investigation. Neurosci Biobehav Rev 36: 572–603.
    1. Franken IH, Stam CJ, Hendriks VM, van den Brink W (2003) Neurophysiological evidence for abnormal cognitive processing of drug cues in heroin dependence. Psychopharmacology (Berl) 170: 205–212.
    1. Franken IH, Hulstijn KP, Stam CJ, Hendriks VM, van den Brink W (2004) Two new neurophysiological indices of cocaine craving: evoked brain potentials and cue modulated startle reflex. J Psychopharmacol 18: 544–552.
    1. van de Laar MC, Licht R, Franken IH, Hendriks VM (2004) Event-related potentials indicate motivational relevance of cocaine cues in abstinent cocaine addicts. Psychopharmacology (Berl) 177: 121–129.
    1. Dunning JP, Parvaz MA, Hajcak G, Maloney T, Alia-Klein N, et al. (2011) Motivated attention to cocaine and emotional cues in abstinent and current cocaine users–an ERP study. Eur J Neurosci 33: 1716–1723.
    1. Linden DE (2005) The p300: where in the brain is it produced and what does it tell us? Neuroscientist 11: 563–576.
    1. Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW (1999) In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 2: 859–861.
    1. Chambers RA, Taylor JR, Potenza MN (2003) Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry 160: 1041–1052.
    1. Galvan A, Hare TA, Parra CE, Penn J, Voss H, et al. (2006) Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci 26: 6885–6892.
    1. Smith DG, Simon Jones P, Bullmore ET, Robbins TW, Ersche KD (2014) Enhanced orbitofrontal cortex function and lack of attentional bias to cocaine cues in recreational stimulant users. Biol Psychiatry 75: 124–131.
    1. Grant JE, Williams KA, Potenza MN (2007) Impulse-control disorders in adolescent psychiatric inpatients: co-occurring disorders and sex differences. J Clin Psychiatry 68: 1584–1592.
    1. Poldrack RA, Fletcher PC, Henson RN, Worsley KJ, Brett M, et al. (2008) Guidelines for reporting an fMRI study. Neuroimage 40: 409–414.

Source: PubMed

3
Subscribe