Assessing Tumor Response to Treatment in Patients with Lung Cancer Using Dynamic Contrast-Enhanced CT

Louise S Strauch, Rie Ø Eriksen, Michael Sandgaard, Thomas S Kristensen, Michael B Nielsen, Carsten A Lauridsen, Louise S Strauch, Rie Ø Eriksen, Michael Sandgaard, Thomas S Kristensen, Michael B Nielsen, Carsten A Lauridsen

Abstract

The aim of this study was to provide an overview of the literature available on dynamic contrast-enhanced computed tomography (DCE-CT) as a tool to evaluate treatment response in patients with lung cancer. This systematic review was compiled according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Only original research articles concerning treatment response in patients with lung cancer assessed with DCE-CT were included. To assess the validity of each study we implemented Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The initial search yielded 651 publications, and 16 articles were included in this study. The articles were divided into groups of treatment. In studies where patients were treated with systemic chemotherapy with or without anti-angiogenic drugs, four out of the seven studies found a significant decrease in permeability after treatment. Four out of five studies that measured blood flow post anti-angiogenic treatments found that blood flow was significantly decreased. DCE-CT may be a useful tool in assessing treatment response in patients with lung cancer. It seems that particularly permeability and blood flow are important perfusion values for predicting treatment outcome. However, the heterogeneity in scan protocols, scan parameters, and time between scans makes it difficult to compare the included studies.

Keywords: DCE-CT; Dynamic Contrast-Enhanced CT; lung cancer; treatment response.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

References

    1. Jemal A., Bray F., Center M.M., Ferlay J., Ward E., Forman D. Global cancer statistics. CA Cancer J. Clin. 2011;61:69–90. doi: 10.3322/caac.20107.
    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA Cancer J. Clin. 2016;66:7–30. doi: 10.3322/caac.21332.
    1. Ahmad A., Gadgeel S. Lung Cancer and Personalized Medicine. Springer International Publishing; Cham, Switzerland: 2016.
    1. Korpanty G., Smyth E., Sullivan L.A., Brekken R.A., Carney D.N. Antiangiogenic therapy in lung cancer: Focus on vascular endothelial growth factor pathway. Exp. Biol. Med. 2010;235:3–9. doi: 10.1258/ebm.2009.009191.
    1. Schmid-Bindert G. Update on antiangiogenic treatment of advanced non-small cell lung cancer (NSCLC) Target. Oncol. 2013;8:15–26. doi: 10.1007/s11523-013-0261-1.
    1. Eisenhauer E.A., Therasse P., Bogaerts J., Schwartz L.H., Sargent D., Ford R., Dancey J., Arbuck S., Gwyther S., Mooney M., et al. New response evaluation criteria in solid tumours: Revised recist guideline (version 1.1) Eur. J. Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Goh V., Ng Q.S., Miles K. Computed tomography perfusion imaging for therapeutic assessment: Has it come of age as a biomarker in oncology? Investig. Radiol. 2012;47:2–4. doi: 10.1097/RLI.0b013e318229ff3e.
    1. O’Connor J.P., Tofts P.S., Miles K.A., Parkes L.M., Thompson G., Jackson A. Dynamic contrast-enhanced imaging techniques: Ct and mri. Br. J. Radiol. 2011;84:S112–S120. doi: 10.1259/bjr/55166688.
    1. Garcia-Figueiras R., Goh V.J., Padhani A.R., Baleato-Gonzalez S., Garrido M., Leon L., Gomez-Caamano A. CT perfusion in oncologic imaging: A useful tool? AJR Am. J. Roentgenol. 2013;200:8–19. doi: 10.2214/AJR.11.8476.
    1. Miles K.A., Lee T.Y., Goh V., Klotz E., Cuenod C., Bisdas S., Groves A.M., Hayball M.P., Alonzi R., Brunner T. Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur. Radiol. 2012;22:1430–1441. doi: 10.1007/s00330-012-2379-4.
    1. Hansen M., Norling R., Lauridsen C., Fallentin E., Bæksgaard L., Kofoed K., Svendsen L., Nielsen M. Computed tomography (CT) perfusion in abdominal cancer: Technical aspects. Diagnostics. 2013;3:261–270. doi: 10.3390/diagnostics3020261.
    1. Miles K.A., Griffiths M.R. Perfusion CT: A worthwhile enhancement? Br. J. Radiol. 2003;76:220–231. doi: 10.1259/bjr/13564625.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. J. Clin. Epidemiol. 2009;62:1006–1012. doi: 10.1016/j.jclinepi.2009.06.005.
    1. Whiting P.F., Rutjes A.W., Westwood M.E., Mallett S., Deeks J.J., Reitsma J.B., Leeflang M.M., Sterne J.A., Bossuyt P.M. Quadas-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011;155:529–536. doi: 10.7326/0003-4819-155-8-201110180-00009.
    1. Ng Q.S., Goh V., Carnell D., Meer K., Padhani A.R., Saunders M.I., Hoskin P.J. Tumor antivascular effects of radiotherapy combined with combretastatin a4 phosphate in human non-small-cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007;67:1375–1380. doi: 10.1016/j.ijrobp.2006.11.028.
    1. Ng Q.S., Goh V., Milner J., Padhani A.R., Saunders M.I., Hoskin P.J. Acute tumor vascular effects following fractionated radiotherapy in human lung cancer:in vivo whole tumor assessment using volumetric perfusion computed tomography. Int. J. Radiat. Oncol. Biol. Phys. 2007;67:417–424. doi: 10.1016/j.ijrobp.2006.10.005.
    1. Ng Q.S., Goh V., Milner J., Sundin J., Wellsted D., Saunders M.I., Hoskin P.J. Quantitative helical dynamic contrast enhanced computed tomography assessment of the spatial variation in whole tumour blood volume with radiotherapy in lung cancer. Lung Cancer. 2010;69:71–76. doi: 10.1016/j.lungcan.2009.09.002.
    1. Jiang X.D., Dai P., Qiao Y., Wu J., Song D.A., Li S.Q. Clinical study on the recombinant human endostatin regarding improving the blood perfusion and hypoxia of non-small-cell lung cancer. Clin. Transl. Oncol. 2012;14:437–443. doi: 10.1007/s12094-012-0821-3.
    1. Lind J.S., Meijerink M.R., Dingemans A.M., van Kuijk C., Ollers M.C., de Ruysscher D., Postmus P.E., Smit E.F. Dynamic contrast-enhanced CT in patients treated with sorafenib and erlotinib for non-small cell lung cancer: A new method of monitoring treatment? Eur. Radiol. 2010;20:2890–2898. doi: 10.1007/s00330-010-1869-5.
    1. Fraioli F., Anzidei M., Zaccagna F., Mennini M.L., Serra G., Gori B., Longo F., Catalano C., Passariello R. Whole-tumor perfusion CT in patients with advanced lung adenocarcinoma treated with conventional and antiangiogenetic chemotherapy: Initial experience. Radiology. 2011;259:574–582. doi: 10.1148/radiol.11100600.
    1. Sudarski S., Shi J., Schmid-Bindert G., Manegold C., Pilz L.R., Zhou C., Schoenberg S.O., Henzler T. Dynamic volume perfusion computed tomography parameters versus recist for the prediction of outcome in lung cancer patients treated with conventional chemotherapy. J. Thorac. Oncol. 2015;10:164–171. doi: 10.1097/JTO.0000000000000376.
    1. Zhao L., Guan W., Han Y., Zhao Y. Comparative study on CT perfusion parameters of different types of lung cancer before and after chemoradiotherapy. J. Biol. Regul. Homeost. Agents. 2014;28:675–681.
    1. Hegenscheid K., Behrendt N., Rosenberg C., Kuehn J.P., Ewert R., Hosten N., Puls R. Assessing early vascular changes and treatment response after laser-induced thermotherapy of pulmonary metastases with perfusion CT: Initial experience. AJR Am. J. Roentgenol. 2010;194:1116–1123. doi: 10.2214/AJR.09.2810.
    1. Fraioli F., Anzidei M., Serra G., Liberali S., Fiorelli A., Zaccagna F., Longo F., Anile M., Catalano C. Whole-tumour CT-perfusion of unresectable lung cancer for the monitoring of anti-angiogenetic chemotherapy effects. Br. J. Radiol. 2013;86:20120174. doi: 10.1259/bjr.20120174.
    1. Tacelli N., Santangelo T., Scherpereel A., Duhamel A., Deken V., Klotz E., Cortot A., Lafitte J.J., Wallyn F., Remy J., et al. Perfusion CT allows prediction of therapy response in non-small cell lung cancer treated with conventional and anti-angiogenic chemotherapy. Eur. Radiol. 2013;23:2127–2136. doi: 10.1007/s00330-013-2821-2.
    1. Wang J., Xiao J., Wei X., Wang L., Lin L., Liu Z., Wang X., Sun B., Li K. Circulating endothelial cells and tumor blood volume as predictors in lung cancer. Cancer Sci. 2013;104:445–452. doi: 10.1111/cas.12097.
    1. Zhang F.L., Gao E.Y., Shu R.B., Wang H., Zhang Y., Sun P., Li M., Tang W., Jiang B.Q., Chen S.Q., et al. Human recombinant endostatin combined with cisplatin based doublets in treating patients with advanced nsclc and evaluation by CT perfusion imaging. Asian Pac. J. Cancer Prev. 2015;16:6765–6768. doi: 10.7314/APJCP.2015.16.15.6765.
    1. Wang J., Wu N., Cham M.D., Song Y. Tumor response in patients with advanced non-small cell lung cancer: Perfusion CT evaluation of chemotherapy and radiation therapy. AJR Am. J. Roentgenol. 2009;193:1090–1096. doi: 10.2214/AJR.08.1367.
    1. Li X.S., Fan H.X., Fang H., Huang H., Song Y.L., Zhou C.W. Value of whole-tumor dual-input perfusion CT in predicting the effect of multiarterial infusion chemotherapy on advanced non-small cell lung cancer. AJR Am. J. Roentgenol. 2014;203:W497–W505. doi: 10.2214/AJR.13.11621.
    1. Qiao P.G., Zhang H.T., Zhou J., Li M., Ma J.L., Tian N., Xing X.D., Li G.J. Early evaluation of targeted therapy effectiveness in non-small cell lung cancer by dynamic contrast-enhanced CT. Clin. Transl. Oncol. 2015;18:47–57. doi: 10.1007/s12094-015-1335-6.
    1. Coggle J.E., Lambert B.E., Moores S.R. Radiation effects in the lung. Environ. Health Perspect. 1986;70:261–291. doi: 10.1289/ehp.8670261.
    1. Miles K.A., Cuenod C.-A. Multidetector Computed Tomography in Oncology. Informa Healthcare; London, UK: 2007.
    1. Miles K.A., Charnsangavej C., Lee F.T., Fishman E.K., Horton K., Lee T.Y. Application of CT in the investigation of angiogenesis in oncology. Acad. Radiol. 2000;7:840–850. doi: 10.1016/S1076-6332(00)80632-7.
    1. Yao J.C., Phan A., Hoff P.M., Chen H.X., Charnsangavej C., Yeung S.C., Hess K., Ng C., Abbruzzese J.L., Ajani J.A. Targeting vascular endothelial growth factor in advanced carcinoid tumor: A random assignment phase ii study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J. Clin. Oncol. 2008;26:1316–1323. doi: 10.1200/JCO.2007.13.6374.
    1. Bisdas S., Rumboldt Z., Wagenblast J., Baghi M., Koh T.S., Hambek M., Vogl T.J., Mack M.G. Response and progression-free survival in oropharynx squamous cell carcinoma assessed by pretreatment perfusion CT: Comparison with tumor volume measurements. AJNR Am. J. Neuroradiol. 2009;30:793–799. doi: 10.3174/ajnr.A1449.
    1. Miles K.A. Perfusion CT for the assessment of tumour vascularity: Which protocol? Br. J. Radiol. 2003;76:S36–S42. doi: 10.1259/bjr/18486642.
    1. Kambadakone A.R., Sahani D.V. Body perfusion CT: Technique, clinical applications, and advances. Radiol. Clin. N. Am. 2009;47:161–178. doi: 10.1016/j.rcl.2008.11.003.
    1. Nakano S., Gibo J., Fukushima Y., Kaira K., Sunaga N., Taketomi-Takahashi A., Tsushima Y., Mori M. Perfusion evaluation of lung cancer: Assessment using dual-input perfusion computed tomography. J. Thorac. Imaging. 2013;28:253–262. doi: 10.1097/RTI.0b013e318281dcee.
    1. Kiessling F., Boese J., Corvinus C., Ederle J.R., Zuna I., Schoenberg S.O., Brix G., Schmahl A., Tuengerthal S., Herth F., et al. Perfusion CT in patients with advanced bronchial carcinomas: A novel chance for characterization and treatment monitoring? Eur. Radiol. 2004;14:1226–1233. doi: 10.1007/s00330-004-2288-2.
    1. Harders S.W., Balyasnikowa S., Fischer B.M. Functional imaging in lung cancer. Clin. Physiol. Funct. Imaging. 2014;34:340–355. doi: 10.1111/cpf.12104.
    1. Kim D.H., Kim S.H., Im S.A., Han S.W., Goo J.M., Willmann J.K., Lee E.S., Eo J.S., Paeng J.C., Han J.K., et al. Intermodality comparison between 3D perfusion CT and 18F-FDG PET/CT imaging for predicting early tumor response in patients with liver metastasis after chemotherapy: Preliminary results of a prospective study. Eur. J. Radiol. 2012;81:3542–3550. doi: 10.1016/j.ejrad.2012.02.012.
    1. Miles K.A., Griffiths M.R., Keith C.J. Blood flow-metabolic relationships are dependent on tumour size in non-small cell lung cancer: A study using quantitative contrast-enhanced computer tomography and positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging. 2006;33:22–28. doi: 10.1007/s00259-005-1932-7.
    1. Van Elmpt W., Zegers C.M., Reymen B., Even A.J., Dingemans A.M., Oellers M., Wildberger J.E., Mottaghy F.M., Das M., Troost E.G., et al. Multiparametric imaging of patient and tumour heterogeneity in non-small-cell lung cancer: Quantification of tumour hypoxia, metabolism and perfusion. Eur. J. Nucl. Med. Mol. Imaging. 2016;43:240–248. doi: 10.1007/s00259-015-3169-4.
    1. O’Connor J.P., Jackson A., Parker G.J., Roberts C., Jayson G.C. Dynamic contrast-enhanced mri in clinical trials of antivascular therapies. Nat. Rev. Clin. Oncol. 2012;9:167–177. doi: 10.1038/nrclinonc.2012.2.
    1. Lee S.M., Lee H.J., Kim J.I., Kang M.J., Goo J.M., Park C.M., Im J.G. Adaptive 4d volume perfusion CT of lung cancer: Effects of computerized motion correction and the range of volume coverage on measurement reproducibility. AJR Am. J. Roentgenol. 2013;200:W603–W609. doi: 10.2214/AJR.12.9458.
    1. Goh V., Halligan S., Gartner L., Bassett P., Bartram C.I. Quantitative colorectal cancer perfusion measurement by multidetector-row CT: Does greater tumour coverage improve measurement reproducibility? Br. J. Radiol. 2006;79:578–583. doi: 10.1259/bjr/18842556.
    1. Sanghera B., Banerjee D., Khan A., Simcock I., Stirling J.J., Glynne-Jones R., Goh V. Reproducibility of 2d and 3d fractal analysis techniques for the assessment of spatial heterogeneity of regional blood flow in rectal cancer. Radiology. 2012;263:865–873. doi: 10.1148/radiol.12111316.
    1. Goh V., Halligan S., Hugill J.A., Bartram C.I. Quantitative assessment of tissue perfusion using mdct: Comparison of colorectal cancer and skeletal muscle measurement reproducibility. AJR Am. J. Roentgenol. 2006;187:164–169. doi: 10.2214/AJR.05.0050.
    1. Ng C.S., Chandler A.G., Wei W., Anderson E.F., Herron D.H., Charnsangavej C., Kurzrock R. Reproducibility of perfusion parameters obtained from perfusion CT in lung tumors. AJR Am. J. Roentgenol. 2011;197:113–121. doi: 10.2214/AJR.10.5404.

Source: PubMed

3
Subscribe