Category-specific integration of homeostatic signals in caudal but not rostral human insula

W Kyle Simmons, Kristina M Rapuano, Seth J Kallman, John E Ingeholm, Bernard Miller, Stephen J Gotts, Jason A Avery, Kevin D Hall, Alex Martin, W Kyle Simmons, Kristina M Rapuano, Seth J Kallman, John E Ingeholm, Bernard Miller, Stephen J Gotts, Jason A Avery, Kevin D Hall, Alex Martin

Abstract

Prevailing theories hold that the insula is functionally organized along its caudal-to-rostral axis, with posterior regions coding lower-level sensory information and anterior regions coding higher-level stimulus significance relative to the body's homeostatic needs. Contrary to predictions of this model, the response of the taste-sensitive region of the caudal, but not rostral, insula to food images was directly related to the body's homeostatic state as indexed by levels of peripheral glucose.

Trial registration: ClinicalTrials.gov NCT00846040.

Figures

Figure 1. fMRI Task Descriptions
Figure 1. fMRI Task Descriptions
Panel A: Food/non-food picture repetition detection task. Panel B: Single trial in the gustatory mapping task. See online methods for detailed task descriptions.
Figure 2. Insula gustatory cortex responses to…
Figure 2. Insula gustatory cortex responses to food and non-food pictures as a function of circulating glucose level
The anterior insula gustatory cortex exhibited overall greater responses to food than non-food images. In the dorsal mid-insula, however, the response to food, but not non-food, images was modulated by peripheral glucose.

References

    1. Craig ADB. Nat Rev Neurosci. 2009;10:59–70.
    1. Craig ADB. Ann N Y Acad Sci. 2011;1225:72–82.
    1. Craig AD. Nat Rev Neurosci. 2002;3:655–666.
    1. Small DM. Brain Struct Funct. 2010;214:551–561.
    1. Veldhuizen MG, et al. Hum. Brain Mapp. 2011;32:2256–2266.
    1. Simmons WK, Martin A, Barsalou LW. Cereb Cortex. 2005;15:1602–1608.
    1. van der Laan LN, de Ridder DTD, Viergever MA, Smeets PAM. NeuroImage, 2010;55:296–303.
    1. Labar KS, et al. Behavioral Neuroscience. 2001;115:493–500.
    1. Killgore W, Young A, Femia L, Bogorodzki P. NeuroImage. 2003;19:1381–1394.
    1. Grayson BE, Seeley RJ, Sandoval DA. Nat Rev Neurosci. 2012;14:24–37.
    1. Yettefti K, Orsini JC, Perrin J. Physiol Behav. 1997;61:93–100.
    1. Beckstead RM, Morse JR, Norgren R. J. Comp. Neurol. 1980;190:259–282.
    1. Khalsa S, Rudrauf D, Feinstein J, Tranel D. Nat Neurosci. 2009;12:1494–1496.
    1. Damasio A, Damasio H, Tranel D. Cerebral Cortex. 2013;23:833–846.
    1. Philippi CL, et al. PLoS ONE. 2012;7:e38413.
    1. Feinstein JS, et al. J Clin Exp Neuropsychol. 2010;32:88–106.
    1. Beauchamp MS, Lee KE, Haxby JV, Martin A. Neuron. 2002;34:149–159.
    1. Simmons WK, Martin A. Social Cognitive and Affective Neuroscience. 2012;7:467–475.
    1. Veldhuizen MG, Bender G, Constable RT, Small DM. Chem Senses. 2007;32:569–581.
    1. Murphy K, Garavan H. NeuroImage. 2004;22:879–885.
    1. Friston K. NeuroImage. 2012;61:1300–1310.
    1. Wittling W, Block A, Genzel S, Schweiger E. Neuropsychologia. 1998;36:461–468.
    1. Craig ADB. Trends in Cognitive Sciences. 2005;9:566–571.

Source: PubMed

3
Subscribe