Safety and Immunogenicity of a Shigella Bivalent Conjugate Vaccine (ZF0901) in 3-Month- to 5-Year-Old Children in China

Yi Mo, Wenjian Fang, Hong Li, Junji Chen, Xiaohua Hu, Bin Wang, Zhengli Feng, Honghua Shi, Ying He, Dong Huang, Zhaojun Mo, Qiang Ye, Lin Du, Yi Mo, Wenjian Fang, Hong Li, Junji Chen, Xiaohua Hu, Bin Wang, Zhengli Feng, Honghua Shi, Ying He, Dong Huang, Zhaojun Mo, Qiang Ye, Lin Du

Abstract

No licensed Shigella vaccine is presently available globally. A double-blinded, randomized, placebo-controlled, age descending phase II clinical trial of a bivalent conjugate vaccine was studied in China. The vaccine ZF0901 consisted of O-specific polysaccharides purified and detoxified from lipopolysaccharide (LPS) of S. flexneri 2a and S. sonnei and covalently bonded to tetanus toxoid. A total of 224, 310, and 434 children, consented by parents or guardians, aged 3 to 6 and 6 to 12 months and 1 to 5 years old, respectively, were injected with half or full doses, with or without adjuvant or control Hib vaccine. There were no serious adverse reactions in all recipients of ZF0901 vaccine independent of age, dosage, number of injections, or the adjuvant status. Thirty days after the last injection, ZF0901 induced robust immune responses with significantly higher levels of type-specific serum antibodies (geometric mean concentrations (GMCs) of IgG anti-LPS) against both serotypes in all age groups compared with the pre-immune or the Hib control (p < 0.0001). Here, we demonstrated that ZF0901 bivalent Shigella conjugate vaccine is safe and immunogenic in infants and young children and is likely suitable for routine immunization.

Keywords: Shigella conjugate vaccine; bivalent; clinical trial; infants and young children; safety and immunogenicity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study profile: subject randomization, screening, enrollment, and vaccine assignment of Phase II study of ZF0901 trial. SAE: serious adverse event.
Figure 2
Figure 2
Incidence rate (%) of adverse reactions related to vaccination reported within 30 days after any injections. (A) Combined incidence rate according to ages. Blue bars indicate mild/moderate reactions and orange for grade 3 reactions. There was no statistical significance within the same age group receiving any type or number of vaccine injections or between any age groups (p > 0.5). (B) Comparison of the rate (%) of adverse reactions according to the number of injections and vaccine types. Blue bars indicate fever incidences and orange, for other adverse reactions. There was no statistical significance in the incidence rate between number of injections within the same age group, with or without adjuvant, full, or half dosages (p > 0.1).
Figure 3
Figure 3
Pre-vaccination GMC anti-LPS IgG in all participants. (A). S. flexneri 2a antibody levels at day 0. (B) S. sonnei antibody levels at day 0.
Figure 4
Figure 4
Composite chart of GMC anti-LPS IgG. (A) S. flexneri 2a, (B) S. sonnei.

References

    1. Kotloff K.L., Riddle M.S., Platts-Mills J.A., Pavlinac P., Zaidi A.K.M. Shigellosis. Lancet. 2018;391:801–812. doi: 10.1016/S0140-6736(17)33296-8.
    1. Baker S., The H.C. Recent insights into Shigella. Curr. Opin. Infect. Dis. 2018;31:449–454. doi: 10.1097/QCO.0000000000000475.
    1. Zachariah O.H., Lizzy M.A., Rose K., Angela M.M. Multiple drug resistance of Campylobacter jejuni and Shigella isolated from diarrhoeic children at Kapsabet County referral hospital, Kenya. BMC Infect. Dis. 2021;21:109. doi: 10.1186/s12879-021-05788-3.
    1. Rizi K.S., Farsiani H., Sasan M.S. High rate of resistance to ceftriaxone and azithromycin among Shigella spp. isolates at three children’s referral hospitals in Northeast Iran. J. Infect. Chemother. 2020;26:955–958. doi: 10.1016/j.jiac.2020.04.022.
    1. Khalil I.A., Troeger C., Blacker B.F., Rao P.C., Brown A., Atherly D.E., Brewer T.G., Engmann C.M., Houpt E.R., Kang G., et al. Morbidity and mortality due to Shigella and Enterotoxigenic Escherichia coli diarrhoea: The Global Burden of Disease Study 1990–2016. Lancet Infect. Dis. 2018;18:1229–1240. doi: 10.1016/S1473-3099(18)30475-4.
    1. Liu Z., Tong M.X., Xiang J., Dear K., Wang C., Ma W., Lu L., Liu Q., Jiang B., Bi P. Daily temperature and bacillary dysentery: Estimated effects, attributable risks, and future disease burden in 316 Chinese cities. Environ. Health Perspect. 2020;128:057008. doi: 10.1289/EHP5779.
    1. Zhang H., Si Y., Wang X., Gong P. Patterns of bacillary dysentery in China, 2005–2010. Int. J. Environ. Res. Public Health. 2016;13:164. doi: 10.3390/ijerph13020164.
    1. Chang Z., Zhang J., Ran L., Sun J., Liu F., Luo L., Zeng L., Wang L., Li Z., Yu H., et al. The changing epidemiology of bacillary dysentery and characteristics of antimicrobial resistance of Shigella isolated in China from 2004–2014. BMC Infect. Dis. 2016;16:685. doi: 10.1186/s12879-016-1977-1.
    1. China CDC National data of class A, B and C communicable diseases in December 2020. Ji Bing Jian Ce. 2021;36:1. doi: 10.3784/j.issn.1003-9961.2021.01.001.
    1. Mani S., Wierzba T., Walker R.I. Status of vaccine research and development for Shigella. Vaccine. 2016;34:2887–2894. doi: 10.1016/j.vaccine.2016.02.075.
    1. Böhles N., Busch K., Hensel M. Vaccines against human diarrheal pathogens: Current status and perspectives. Hum. Vaccines Immunother. 2014;10:1522–1535. doi: 10.4161/hv.29241.
    1. Barry E., Cassels F., Riddle M., Walker R., Wierzba T. Vaccines against Shigella and Enterotoxigenic Escherichia coli: A summary of the 2018 VASE Conference. Vaccine. 2019;37:4768–4774. doi: 10.1016/j.vaccine.2019.02.070.
    1. Barel L.A., Mulard L.A. Classical and novel strategies to develop a Shigella glycoconjugate vaccine: From concept to efficacy in human. Hum. Vaccines Immunother. 2019;15:1338–1356. doi: 10.1080/21645515.2019.1606972.
    1. Anderson M., Sansonetti P.J., Marteyn B.S. Shigella Diversity and Changing Landscape: Insights for the Twenty-First Century. Front. Cell. Infect. Microbiol. 2016;6:45. doi: 10.3389/fcimb.2016.00045.
    1. Nisa I., Qasim M., Yasin N., Ullah R., Ali A. Shigella flexneri: An emerging pathogen. Folia Microbiol. 2020;65:275–291. doi: 10.1007/s12223-020-00773-w.
    1. Shad A.A., Shad W.A. Shigella sonnei: Virulence and antibiotic resistance. Arch. Microbiol. 2021;203:45–58. doi: 10.1007/s00203-020-02034-3.
    1. Livio S., Strockbine N.A., Panchalingam S., Tennant S.M., Barry E.M., Marohn M.E., Antonio M., Hossain A., Mandomando I., Ochieng J.B., et al. Shigella isolates from the global enteric multicenter study inform vaccine development. Clin. Infect. Dis. 2014;59:933–941. doi: 10.1093/cid/ciu468.
    1. Farzam N., Ramon-Saraf R., Banet-Levi Y., Lerner-Geva L., Ashkenazi S., Kubler-Kielb J., Vinogradov E., Robbins J.B., Schneerson R. Vaccination with Shigella flexneri 2a conjugate induces type 2a and cross-reactive type 6 antibodies in humans but not in mice. Vaccine. 2017;35:4990–4996. doi: 10.1016/j.vaccine.2017.07.070.
    1. Cohen D., Ashkenazi S., Green M.S., Gdalevich M., Robin G., Slepon R., Yavzori M., Orr N., Block C., Ashkenazi I., et al. Double-blind vaccine-controlled randomised efficacy trial of an investigational Shigella sonnei conjugate vaccine in young adults. Lancet. 1997;349:155–159. doi: 10.1016/S0140-6736(96)06255-1.
    1. Passwell J.H., Harlev E., Ashkenazi S., Chu C., Miron D., Ramon R., Farzan N., Shiloach J., Bryla D.A., Majadly F., et al. Safety and immunogenicity of improved Shigella O-specific polysaccharide-protein conjugate vaccines in adults in Israel. Infect. Immun. 2001;69:1351–1357. doi: 10.1128/IAI.69.3.1351-1357.2001.
    1. Passwell J.H., Ashkenazi S., Harlev E., Miron D., Ramon R., Farzam N., Lerner-Geva L., Levi Y., Chu C., Shiloach J., et al. Safety and immunogenicity of Shigella sonnei-CRM9 and Shigella flexneri type 2a-r EPAsucc conjugate vaccines in one- to four-year-old children. Pediatr. Infect. Dis. J. 2003;22:701–706. doi: 10.1097/01.inf.0000078156.03697.a5.
    1. Lei P.-S., Ogawa Y., Flippen-Anderson J.L., Kováč P. Synthesis and crystal structure of methyl 4,6-dideoxy-4-(3-deoxy-l-glycero-tetronamido)-2-O-methyl-α-d-mannopyranoside, the methyl α-glycoside of the terminal unit, and presumed antigenic determinant, of the O-specific polysaccharide of Vibrio cholerae O:1, serotype Ogawa. Carbohydr. Res. 1995;275:117–129. doi: 10.1016/0008-6215(95)00147-l.
    1. Clarkson K.A., Talaat K.R., Alaimo C., Martin P., Bourgeois A.L., Dreyer A., Porter C.K., Chakraborty S., Brubaker J., Elwood D., et al. Immune response characterization in a human challenge study with a Shigella flexneri 2a bioconjugate vaccine. EBioMedicine. 2021;66:103308. doi: 10.1016/j.ebiom.2021.103308.
    1. Talaat K.R., Alaimo C., Martin P., Bourgeois A.L., Dreyer A.M., Kaminski R.W., Porter C.K., Chakraborty S., Clarkson K.A., Brubaker J., et al. Human challenge study with a Shigella bioconjugate vaccine: Analyses of clinical efficacy and correlate of protection. EBioMedicine. 2021;66:103310. doi: 10.1016/j.ebiom.2021.103310.
    1. Cohen D., Atsmon J., Artaud C., Meron-Sudai S., Gougeon M.-L., Bialik A., Goren S., Asato V., Ariel-Cohen O., Reizis A., et al. Safety and immunogenicity of a synthetic carbohydrate conjugate vaccine against Shigella flexneri 2a in healthy adult volunteers: A phase 1, dose-escalating, single-blind, randomised, placebo-controlled study. Lancet Infect. Dis. 2021;21:546–558. doi: 10.1016/S1473-3099(20)30488-6.
    1. Passwell J.H., Ashkenazi S., Banet-Levi Y., Ramon-Saraf R., Farzam N., Lerner-Geva L., Even-Nir H., Yerushalmi B., Chu C., Shiloach J., et al. Age-related efficacy of Shigella O-specific polysaccharide conjugates in 1–4-year-old Israeli children. Vaccine. 2010;28:2231–2235. doi: 10.1016/j.vaccine.2009.12.050.
    1. Ashkenazi S., Passwell J.H., Harlev E., Miron D., Dagan R., Farzan N., Ramon R., Majadly F., Bryla D.A., Karpas A.B., et al. Safety and immunogenicity of Shigella sonnei and Shigella flexneri 2a O-specific polysaccharide conjugates in children. J. Infect. Dis. 1999;179:1565–1568. doi: 10.1086/314759.
    1. Cohen D., Ashkenazi S., Green M., Lerman Y., Slepon R., Robin G., Orr N., Taylor D.N., Sadoff J.C., Chu C., et al. Safety and immunogenicity of investigational Shigella conjugate vaccines in Israeli volunteers. Infect. Immun. 1996;64:4074–4077. doi: 10.1128/iai.64.10.4074-4077.1996.
    1. Palmeira P., Quinello C., Silveira-Lessa A.L., Zago C.A., Carneiro-Sampaio M. IgG Placental Transfer in Healthy and Pathological Pregnancies. Clin. Dev. Immunol. 2011;2012:985646. doi: 10.1155/2012/985646.
    1. Guerra F.M., Crowcroft N.S., Friedman L., Deeks S.L., Halperin S.A., Severini A., Hatchette T.F., Bolotin S. Waning of measles maternal antibody in infants in measles elimination settings–A systematic literature review. Vaccine. 2018;36:1248–1255. doi: 10.1016/j.vaccine.2018.01.002.
    1. Healy C.M., Rench M.A., Swaim L.S., Timmins A., Vyas A., Sangi-Haghpeykar H., Ng N., Rajam G., Havers F., Schiffer J., et al. Kinetics of maternal pertussis-specific antibodies in infants of mothers vaccinated with tetanus, diphtheria and acellular pertussis (Tdap) during pregnancy. Vaccine. 2020;38:5955–5961. doi: 10.1016/j.vaccine.2020.06.050.
    1. Robbins J.B., Chu C., Schneerson R. Hypothesis for vaccine development: Protective immunity to enteric diseases caused by nontyphoidal salmonellae and shigellae may be conferred by serum IgG antibodies to the O-specific polysaccharide of their lipopolysaccharides. Clin. Infect. Dis. 1992;15:346–361. doi: 10.1093/clinids/15.2.346.
    1. Li J.B., Li Z., Pan B., Gong J., Li C.Y., Shi L.W., Huang Y., Du L. Epidemiological surveillance of bacillary dysentery in Zhongshan County, Guangxi. Ying Yong Yu Fang Yi Xue. 2018;24:220–222. (In Chinese)
    1. Jones C., Pollock L., Barnett S.M., Battersby A., Kampmann B. The relationship between concentration of specific antibody at birth and subsequent response to primary immunization. Vaccine. 2014;32:996–1002. doi: 10.1016/j.vaccine.2013.11.104.
    1. Yang H.H., Wu C.G., Xie G.Z., Gu Q.W., Wang B.R., Wang L.Y., Wang H.F., Ding Z.S., Yang Y., Tan W.S., et al. Efficacy trial of Vi polysaccharide vaccine against typhoid fever in south-western China. Bull. World Health Organ. 2001;79:625–631.
    1. Klein N.P., Peyrani P., Yacisin K., Caldwell N., Xu X., Scully I.L., Scott D.A., Jansen K.U., Gruber W.C., Watson W. A phase 3, randomized, double-blind study to evaluate the immunogenicity and safety of 3 lots of 20-valent pneumococcal conjugate vaccine in pneumococcal vaccine-naive adults 18 through 49 years of age. Vaccine. 2021;39:5428–5435. doi: 10.1016/j.vaccine.2021.07.004.
    1. Perez J.L., Absalon J., Beeslaar J., Balmer P., Jansen K.U., Jones T.R., Harris S., York L.J., Jiang Q., Radley D., et al. From research to licensure and beyond: Clinical development of MenB-FHbp, a broadly protective meningococcal B vaccine. Expert Rev. Vaccines. 2018;17:461–477. doi: 10.1080/14760584.2018.1483726.
    1. Wen X., Cao D., Jones R.W., Li J., Szu S., Hoshino Y. Construction and characterization of human rotavirus recombinant VP8* subunit parenteral vaccine candidates. Vaccine. 2012;30:6121–6126. doi: 10.1016/j.vaccine.2012.07.078.

Source: PubMed

3
Subscribe