Quantitative electroencephalogram analysis of frontal cortex functional changes in patients with migraine

Chen-Sen Ouyang, Ching-Tai Chiang, Rei-Cheng Yang, Rong-Ching Wu, Lung-Chang Lin, Chen-Sen Ouyang, Ching-Tai Chiang, Rei-Cheng Yang, Rong-Ching Wu, Lung-Chang Lin

Abstract

The functional abnormality of brain areas accounting for the migraine remains to be elucidated. Most related studies have used functional magnetic resonance imaging to investigate brain areas involved in migraine. However, the results are heterogeneous. In this study, we used a convenient tool to explore the brain regions involved in migraine. In this study, 40 children with migraine and 40 sex- and age-matched health controls were enrolled, and electroencephalogram was used to explore the functional abnormal areas of migraine through electroencephalogram bands and low-resolution electromagnetic tomography analysis. The results revealed that spectrum edge frequency 50 in all electroencephalogram channels in patients with migraine were lower than those in controls. Significant differences were discovered over frontal areas. In addition, significantly higher current density over the frontopolar prefrontal cortex and orbitofrontal cortex and higher connectivity over the left prefrontal cortex were observed in patients with migraine. We suggest that functional disturbance of the prefrontal cortex may play a potential role in children with migraine, and that low-resolution electromagnetic tomography is a reliable and convenient tool for studying the functional disturbance of migraine.

Keywords: EEG; LORETA; current density; migraine; spectrum edge frequency.

© 2020 The Authors. The Kaohsiung Journal of Medical Sciences published by John Wiley & Sons Australia on behalf of Kaohsiung Medical University.

References

REFERENCES

    1. Wober-Bingol C. Epidemiology of migraine and headache in children and adolescents. Curr Pain Headache Rep. 2013;17(6):341.
    1. Abu-Arafeh I, Razak S, Sivaraman B, Graham C. Prevalence of headache and migraine in children and adolescents: A systematic review of population-based studies. Dev Med Child Neurol. 2010;52(12):1088-1097.
    1. Schwedt TJ. Multisensory integration in migraine. Curr Opin Neurol. 2013;26(3):248-253.
    1. Ducros A, Tournier-Lasserve E, Bousser MG. The genetics of migraine. Lancet Neurol. 2002;1(5):285-293.
    1. Russo A, Bruno A, Trojsi F, Tessitore A, Tedeschi G. Lifestyle factors and migraine in childhood. Curr Pain Headache Rep. 2016;20(2):9.
    1. Sprenger T, Ruether KV, Boecker H, Valet M, Berthele A, Pfaffenrath V, et al. Altered metabolism in frontal brain circuits in cluster headache. Cephalalgia. 2007;27(9):1033-1042.
    1. Chong CD, Gaw N, Fu Y, Li J, Wu T, Schwedt TJ. Migraine classification using magnetic resonance imaging resting-state functional connectivity data. Cephalalgia. 2017;37(9):828-844.
    1. Hougaard A, Amin FM, Larsson HB, Rostrup E, Ashina M. Increased intrinsic brain connectivity between pons and somatosensory cortex during attacks of migraine with aura. Hum Brain Mapp. 2017;38(5):2635-2642.
    1. Amin FM, Hougaard A, Magon S, Asghar MS, Ahmad NN, Rostrup E, et al. Change in brain network connectivity during PACAP38-induced migraine attacks: A resting-state functional MRI study. Neurology. 2016;86(2):180-187.
    1. Hodkinson DJ, Wilcox SL, Veggeberg R, Noseda R, Burstein R, Borsook D, et al. Increased amplitude of thalamocortical low-frequency oscillations in patients with migraine. J Neurosci. 2016;36(30):8026-8036.
    1. Coppola G, Di Renzo A, Tinelli E, Di Lorenzo C, Di Lorenzo G, Parisi V, et al. Thalamo-cortical network activity during spontaneous migraine attacks. Neurology. 2016;87(20):2154-2160.
    1. Schulte LH, May A. The migraine generator revisited: Continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain. 2016;139(Pt 7):1987-1993.
    1. Chen Z, Chen X, Liu M, Dong Z, Ma L, Yu S. Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis. J Headache Pain. 2017;18(1):7.
    1. Yu D, Yuan K, Luo L, Zhai J, Bi Y, Xue T, et al. Abnormal functional integration across core brain networks in migraine without aura. Mol Pain. 2017;13:1744806917737461.
    1. Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of migraine: A disorder of sensory processing. Physiol Rev. 2017;97(2):553-622.
    1. Moulton EA, Burstein R, Tully S, Hargreaves R, Becerra L, Borsook D. Interictal dysfunction of a brainstem descending modulatory center in migraine patients. PLoS One. 2008;3(11):e3799.
    1. Fleetwood-Walker SM, Hope PJ, Mitchell R. Antinociceptive actions of descending dopaminergic tracts on cat and rat dorsal horn somatosensory neurones. J Physiol. 1988;399:335-348.
    1. Ozkan M, Teber ST, Deda G. Electroencephalogram variations in pediatric migraines and tension-type headaches. Pediatr Neurol. 2012;46(3):154-157.
    1. Lin LC, Ouyang CS, Wu RC, Yang RC, Chiang CT. Alternative diagnosis of epilepsy in children without epileptiform discharges using deep convolutional neural networks. Int J Neural Syst. 2019;1850060.
    1. Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int J Psychophysiol. 1994;18(1):49-65.
    1. Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D. Functional imaging with low-resolution brain electromagnetic tomography (LORETA): A review. Methods Find Exp Clin Pharmacol. 2002;24(Suppl C):91-95.
    1. Alonso JF, Romero S, Mananas MA, Rojas M, Riba J, Barbanoj MJ. Evaluation of multiple comparison correction procedures in drug assessment studies using LORETA maps. Med Biol Eng Comput. 2015;53(10):1011-1023.
    1. Staljanssens W, Strobbe G, Van Holen R, Keereman V, Gadeyne S, Carrette E, et al. EEG source connectivity to localize the seizure onset zone in patients with drug resistant epilepsy. Neuroimage Clin. 2017;16:689-698.
    1. Worrell GA, Lagerlund TD, Sharbrough FW, Brinkmann BH, Busacker NE, Cicora KM, et al. Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topogr. 2000;12(4):273-282.
    1. Koessler L, Benar C, Maillard L, Badier JM, Vignal JP, Bartolomei F, et al. Source localization of ictal epileptic activity investigated by high resolution EEG and validated by SEEG. Neuroimage. 2010;51(2):642-653.
    1. Headache Classification Committee of the International Headache Society. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013;33(9):629-808.
    1. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, et al. A probabilistic atlas and reference system for the human brain: International consortium for brain mapping (ICBM). Philos Trans R Soc Lond B Biol Sci. 2001;356(1412):1293-1322.
    1. Holmes AP, Blair R, Watson J, Ford I. Nonparametric analysis of statistic images from functional mapping experiments. J Cereb Blood Flow Metab. 1996;16(1):7-22.
    1. Canuet L, Tellado I, Couceiro V, Fraile C, Fernandez-Novoa L, Ishii R, et al. Resting-state network disruption and APOE genotype in Alzheimer's disease: A lagged functional connectivity study. PloS one. 2012;7(9):e46289.
    1. Thomas Yeo B, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125-1165.
    1. Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol. 2005;77(1-2):1-37.
    1. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: A primer with examples. Hum Brain Mapp. 2002;15(1):1-25.
    1. Iranmanesh S, Rodriguez-Villegas E. An ultralow-power sleep spindle detection system on chip. IEEE Trans Biomed Circuits Syst. 2017;11(4):858-866.
    1. Imtiaz SA, Rodriguez-Villegas E. A low computational cost algorithm for REM sleep detection using single channel EEG. Ann Biomed Eng. 2014;42(11):2344-2359.
    1. Borsook D, Veggeberg R, Erpelding N, Borra R, Linnman C, Burstein R, et al. The insula: A "hub of activity" in migraine. Neuroscientist. 2016;22(6):632-652.
    1. Ellerbrock I, Engel AK, May A. Microstructural and network abnormalities in headache. Curr Opin Neurol. 2013;26(4):353-359.
    1. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A. 2008;105(34):12569-12574.
    1. Le Pira F, Reggio E, Quattrocchi G, Sanfilippo C, Maci T, Cavallaro T, et al. Executive dysfunctions in migraine with and without aura: What is the role of white matter lesions? Headache. 2014;54(1):125-130.
    1. Zhang J, Su J, Wang M, Zhao Y, Yao Q, Zhang Q, et al. Increased default mode network connectivity and increased regional homogeneity in migraineurs without aura. J Headache Pain. 2016;17(1):98.
    1. Yu D, Yuan K, Zhao L, Zhao L, Dong M, Liu P, et al. Regional homogeneity abnormalities in patients with interictal migraine without aura: A resting-state study. NMR Biomed. 2012;25(5):806-812.

Source: PubMed

3
Subscribe