Effectiveness of community-based folate-oriented tertiary interventions on incidence of fetus and birth defects: a protocol for a single-blind cluster randomized controlled trial

Mengru Li, Yi Zhang, Xiaotian Chen, Dingmei Wang, Mi Ji, Yuan Jiang, Yalan Dou, Xiaojing Ma, Wei Sheng, Weili Yan, Guoying Huang, Mengru Li, Yi Zhang, Xiaotian Chen, Dingmei Wang, Mi Ji, Yuan Jiang, Yalan Dou, Xiaojing Ma, Wei Sheng, Weili Yan, Guoying Huang

Abstract

Background: Birth defects are the main cause of fetal death, infant mortality and morbidity worldwide. However, the etiology of birth defects remains largely unknown. Maternal folate status during periconception plays an important role in organogenesis and folic acid supplement reduces the risk of neural tube defects, congenital heart diseases, and several other birth defects. This trial seeks to evaluate the effectiveness of folate-oriented tertiary interventions during periconception on the incidence of fetus and birth defects.

Methods: This is a single-blind, two-arm cluster randomized controlled trial in Shanghai, China. Eligible women from 22 clusters are recruited at pre-pregnancy physical examinations clinical settings. Compared to the routine perinatal care group (control arm), folate-oriented tertiary interventions will be provided to the intervention arm. The core interventions consist of assessments of folate status and metabolism, folate intake guidance, and re-evaluation of folate status to ensure red blood cell folate level above 400 ng/ml (906 nmol/L) before pregnancy. Screening and consulting of fetus and birth defects, and treatments of birth defects during pregnancy and afterward will be provided to both arms. The primary outcome is a composite incidence of fetus defects, stillbirth, and neonatal birth defects identified from the confirmation of pregnancy to 28 days after birth. Secondary outcomes include maternal and offspring adverse complications and cost-effectiveness of folate-oriented tertiary interventions. This protocol adheres to the SPIRIT Checklist.

Discussion: To achieve the recommended folate status before or during pregnancy is still a challenge worldwide. This community-based cluster-randomized controlled intervention trial will evaluate the effectiveness of a package of interventions aiming at achieving recommended maternal folate status covering pre- and during pregnancy in reducing fetus and birth defects. Our study has the potential to improve the community-based practice of reducing modifiable risk factors of disease and improving primary prevention of the defects in China. The procedures would formulate the policy on folic acid supplementation during periconception against birth defects in primary care settings.

Trial registration: Clinical Trial Registry, NCT03725878 . Prospectively registered on 31 October 2018.

Keywords: Birth defects; Cluster randomized controlled trial; Periconception health care; Red blood cell folate; Serum folate; Study protocol.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow diagram of enrolment, interventions, and assessments
Fig. 2
Fig. 2
Flow diagram for the trial of the folate-oriented tertiary interventions on fetus and infant outcomes

References

    1. Sixty-Third World Health Assembly WHO Human organ and tissue transplantation. Resolution WHA 63.22 of the Sixty-Third World Health Assembly. Cell Tissue Bank. 2010;11(4):411–412.
    1. Obeid R, Holzgreve W, Pietrzik K. Folate supplementation for prevention of congenital heart defects and low birth weight: an update. Cardiovasc Diagn Ther. 2019;9(Suppl 2):S424–S433.
    1. World Health Organization. []. Accessed on 10 Apr 2019.
    1. Berry RJ, Li Z, Erickson JD, Li S, Moore CA, Wang H, Mulinare J, Zhao P, Wong LY, Gindler J, et al. Prevention of neural-tube defects with folic acid in China. China-U.S. collaborative project for neural tube defect prevention. N Engl J Med. 1999;341(20):1485–1490.
    1. Czeizel AE, Dudas I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med. 1992;327(26):1832–1835.
    1. Suren P, Roth C, Bresnahan M, Haugen M, Hornig M, Hirtz D, Lie KK, Lipkin WI, Magnus P, Reichborn-Kjennerud T, et al. Association between maternal use of folic acid supplements and risk of autism Spectrum disorders in children. JAMA. 2013;309(6):570–577.
    1. Cordero AM, Crider KS, Rogers LM, Cannon MJ, Berry RJ. Optimal serum and red blood cell folate concentrations in women of reproductive age for prevention of neural tube defects: World Health Organization guidelines. MMWR Morb Mortal Wkly Rep. 2015;64(15):421–423.
    1. Liu S, Joseph KS, Luo W, Leon JA, Lisonkova S, Van den Hof M, Evans J, Lim K, Little J, Sauve R, et al. Effect of folic acid food fortification in Canada on congenital heart disease subtypes. Circulation. 2016;134(9):647–655.
    1. van Beynum IM, Kapusta L, Bakker MK, den Heijer M, Blom HJ, de Walle HE. Protective effect of periconceptional folic acid supplements on the risk of congenital heart defects: a registry-based case-control study in the northern Netherlands. Eur Heart J. 2010;31(4):464–471.
    1. Wehby GL, Murray JC. Folic acid and orofacial clefts: a review of the evidence. Oral Dis. 2010;16(1):11–19.
    1. Li S, Chao A, Li Z, Moore CA, Liu YH, Zhu JH, Erickson JD, Hao L, Berry RJ. Folic acid use and Nonsyndromic Orofacial clefts in China a prospective cohort study. Epidemiology. 2012;23(3):423–432.
    1. George L, Mills JL, Johansson AL, Nordmark A, Olander B, Granath F, Cnattingius S. Plasma folate levels and risk of spontaneous abortion. JAMA. 2002;288(15):1867–1873.
    1. Czeizel AE. Is folic acid a risk factor for oral clefts? Eur J Epidemiol. 2013;28(11):841–843.
    1. Hung J, Yang TL, Urrutia TF, Li R, Perry CA, Hata H, Cogger EA, Moriarty DJ, Caudill MA. Additional food folate derived exclusively from natural sources improves folate status in young women with the MTHFR 677 CC or TT genotype. J Nutr Biochem. 2006;17(11):728–734.
    1. Mamasoula C, Prentice RR, Pierscionek T, Pangilinan F, Mills JL, Druschel C, Pass K, Russell MW, Hall D, Topf A, et al. Association between C677T polymorphism of methylene Tetrahydrofolate Reductase and congenital heart disease: meta-analysis of 7697 cases and 13 125 controls. Circ Cardiovasc Gene. 2013;6(4):347–353.
    1. Zhao JY, Qiao B, Duan WY, Gong XH, Peng QQ, Jiang SS, Lu CQ, Chen YJ, Shen HB, Huang GY, et al. Genetic variants reducing MTR gene expression increase the risk of congenital heart disease in Han Chinese populations. Eur Heart J. 2014;35(11):733–742.
    1. Zhao JY, Yang XY, Gong XH, Gu ZY, Duan WY, Wang J, Ye ZZ, Shen HB, Shi KH, Hou J, et al. Functional Variant in Methionine Synthase Reductase Intron-1 Significantly Increases the Risk of Congenital Heart Disease in the Han Chinese Population. Circulation. 2012;125(3):482.
    1. Zhao JY, Yang XY, Shi KH, Sun SN, Hou J, Ye ZZ, Wang J, Duan WY, Qiao B, Chen YJ, et al. A functional variant in the cystathionine beta-synthase gene promoter significantly reduces congenital heart disease susceptibility in a Han Chinese population. Cell Res. 2013;23(2):242–253.
    1. Wang DA, Wang F, Shi KH, Tao H, Li Y, Zhao R, Lu H, Duan WY, Qiao B, Zhao SM, et al. Lower Circulating Folate Induced by a Fidgetin Intronic Variant Is Associated With Reduced Congenital Heart Disease Susceptibility. Circulation. 2017;135(18):1733.
    1. Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson K, Epling JW, Garcia FAR, Kemper AR, Krist AH, Kurth AE, Landefeld CS, et al. Folic acid supplementation for the prevention of neural tube defects US preventive services task force recommendation statement. Jama. 2017;317(2):183–189.
    1. Measures for the implementation of the law of the People's Republic of China on maternal and infant health care. []. Accessed on 20 Jan 2020.
    1. Xuelei Yin XD, Yao M. Analysis on the composition of 481 neonates with congenital malformation and their associated factors. J Clin Pediatr. 2008;26(3):204–208.
    1. Lixin Zheng ML, Wang Q, Xu S, Pan G, Huang J, Zeng M. Investigation on birth defects of fetus after twelve weeks pregnancy and chiIdren with 0-5 yares old in part area of Guangdong prevince. Chin J Fam Plann. 2017;25(2):93–97.
    1. Blencowe H, Cousens S, Modell B, Lawn J. Folic acid to reduce neonatal mortality from neural tube disorders. Int J Epidemiol. 2010;39(Suppl 1):i110–i121.
    1. Heil SG, Van der Put NMJ, Waas ET, den Heijer M, Trijbels FJM, Blom HJ. Is mutated serine hydroxymethyltransferase (SHMT) involved in the etiology of neural tube defects? Mol Genet Metab. 2001;73(2):164–172.
    1. Chango A, Emery-Fillon N, de Courcy GP, Lambert D, Pfister M, Rosenblatt DS, Nicolas JP. A polymorphism (80G-> a) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab. 2000;70(4):310–315.
    1. Huang T, Tucker KI, Lee YC, Crott JW, Parnell LD, Shen JA, Smith CE, Ordovas JM, Li D, Lai CQ. Methylenetetrahydrofolate Reductase variants associated with hypertension and cardiovascular disease interact with dietary polyunsaturated fatty acids to modulate plasma Homocysteine in Puerto Rican adults. J Nutr. 2011;141(4):654–659.
    1. Saraswathy KN, Asghar M, Samtani R, Murry B, Mondal PR, Ghosh PK, Sachdeva MP. Spectrum of MTHFR gene SNPs C677T and A1298C: a study among 23 population groups of India. Mol Biol Rep. 2012;39(4):5025–5031.
    1. Field MS, Kamynina E, Agunloye OC, Liebenthal RP, Lamarre SG, Brosnan ME, Brosnan JT, Stover PJ. Nuclear enrichment of Folate cofactors and Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) protect de novo Thymidylate biosynthesis during Folate deficiency. J Biol Chem. 2014;289(43):29642–29650.
    1. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, Augustovski F, Briggs AH, Mauskopf J, Loder E, et al. Consolidated health economic evaluation reporting standards (CHEERS) statement. BMJ. 2013;346:f1049.

Source: PubMed

3
Subscribe