Low-dose oral sirolimus and the risk of menstrual-cycle disturbances and ovarian cysts: analysis of the randomized controlled SUISSE ADPKD trial

Matthias Braun, James Young, Cäcilia S Reiner, Diane Poster, Fabienne Krauer, Andreas D Kistler, Paulus Kristanto, Xueqi Wang, Yang Liu, Johannes Loffing, Gustav Andreisek, Arnold von Eckardstein, Oliver Senn, Rudolf P Wüthrich, Andreas L Serra, Matthias Braun, James Young, Cäcilia S Reiner, Diane Poster, Fabienne Krauer, Andreas D Kistler, Paulus Kristanto, Xueqi Wang, Yang Liu, Johannes Loffing, Gustav Andreisek, Arnold von Eckardstein, Oliver Senn, Rudolf P Wüthrich, Andreas L Serra

Abstract

Sirolimus has been approved for clinical use in non proliferative and proliferative disorders. It inhibits the mammalian target of rapamycin (mTOR) signaling pathway which is also known to regulate ovarian morphology and function. Preliminary observational data suggest the potential for ovarian toxicity but this issue has not been studied in randomized controlled trials. We reviewed the self-reported occurrence of menstrual cycle disturbances and the appearance of ovarian cysts post hoc in an open label randomized controlled phase II trial conducted at the University Hospital Zürich between March 2006 and March 2010. Adult females with autosomal dominant polycystic kidney disease, an inherited kidney disease not known to affect ovarian morphology and function, were treated with 1.3 to 1.5 mg sirolimus per day for a median of 19 months (N = 21) or standard care (N = 18). Sirolimus increased the risk of both oligoamenorrhea (hazard ratio [HR] 4.3, 95% confidence interval [CI] 1.1 to 29) and ovarian cysts (HR 4.4, CI 1.1 to 26); one patient was cystectomized five months after starting treatment with sirolimus. We also studied mechanisms of sirolimus-associated ovarian toxicity in rats. Sirolimus amplified signaling in rat ovarian follicles through the pro-proliferative phosphatidylinositol 3-kinase pathway. Low dose oral sirolimus increases the risk of menstrual cycle disturbances and ovarian cysts and monitoring of sirolimus-associated ovarian toxicity is warranted and might guide clinical practice with mammalian target of rapamycin inhibitors.

Trial registration: ClinicalTrials.gov NCT00346918.

Conflict of interest statement

Competing Interests: ALS received consulting fees from Hoffmann–La Roche and Nycomed, and grant support from Wyeth (now Pfizer); DP received travel support from Wyeth (now Pfizer); ADK received lecture fees from Wyeth and Genzyme, and travel support from Amgen; JY is an employee of Biometrical Practice BIOP; PK is an employee of Aardex; RPW received consulting and lecture fees from Genzyme, Novartis and Wyeth, and grant support from Wyeth. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Enrollment and Outcomes.
Figure 1. Enrollment and Outcomes.
Figure 2. Oligoamenorrhea (upper panel) and the…
Figure 2. Oligoamenorrhea (upper panel) and the size (lower panel; in millimeters) and the left-right location (R, L) of ovarian cysts over time in the sirolimus (orange) and control (blue) groups.
Figure 3. Time course of adherence parameters…
Figure 3. Time course of adherence parameters (persistence and adherence) in patients assigned to the sirolimus group.
The persistence curve shows a Kaplan Meier estimation of the proportion of patients on treatment. The adherence curve indicates the day-to-day proportion of patients who took sirolimus as prescribed. Data from 21 individual dosing histories were used for this analysis.
Figure 4. Molecular (Panel A and B)…
Figure 4. Molecular (Panel A and B) and imunohistochemical analyses (Panel C) of rat ovary.
Panel A. Gel electrophoresis of proteins carried out to assess sirolimus-associated changes in the activity of key signaling pathways thought to regulate ovarian function and morphology. Sirolimus treatment amplified signaling through phosphatidylinositol 3-kinase (AktSer743), thought to be associated with human polycystic ovarian syndrome, and blocked the mammalian target of rapamycin pathway (p70 S6KThr421). Panel B. The ratios of phosphorylated to non-phosphorylated molecules are expressed in arbitrary densitometric units (Sirolimus minus control – mean (95% confidence interval): p70 S6KThr421/Ser424 to p70 S6K −0.28 (−0.57 to 0.02) and AktSer473 to Akt 0.34 (0.09 to 0.59). Panel C: Immunohistochemical analysis shows positive staining with a nuclear pattern for AktSer743 in granulosa cells of rats receiving sirolimus and for p70 S6KThr421 in granulosa cells of control rats receiving vehicle.

References

    1. Alam H, Maizels ET, Park Y, Ghaey S, Feiger ZJ, et al. (2004) Follicle-stimulating hormone activation of hypoxia-inducible factor-1 by the phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation. J Biol Chem 279: 19431–19440.
    1. Kahan BD (2000) Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet 356: 194–202.
    1. MacDonald AS (2001) A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation 71: 271–280.
    1. Kahan BD, Julian BA, Pescovitz MD, Vanrenterghem Y, Neylan J (1999) Sirolimus reduces the incidence of acute rejection episodes despite lower cyclosporine doses in caucasian recipients of mismatched primary renal allografts: a phase II trial. Rapamune Study Group. Transplantation 68: 1526–1532.
    1. Boobes Y, Bernieh B, Saadi H, Raafat Al Hakim M, Abouchacra S (2010) Gonadal dysfunction and infertility in kidney transplant patients receiving sirolimus. Int Urol Nephrol 42: 493–498.
    1. Cure P, Pileggi A, Froud T, Norris PM, Baidal DA, et al. (2004) Alterations of the female reproductive system in recipients of islet grafts. Transplantation 78: 1576–1581.
    1. Alfadhli E, Koh A, Albaker W, Bhargava R, Ackerman T, et al. (2009) High prevalence of ovarian cysts in premenopausal women receiving sirolimus and tacrolimus after clinical islet transplantation. Transpl Int 22: 622–625.
    1. Gaber AO, Kahan BD, Van Buren C, Schulman SL, Scarola J, et al. (2008) Comparison of sirolimus plus tacrolimus versus sirolimus plus cyclosporine in high-risk renal allograft recipients: results from an open-label, randomized trial. Transplantation 86: 1187–1195.
    1. Stamm ER, Townsend RR, Johnson AM, Garg K, Manco-Johnson M, et al. (1999) Frequency of ovarian cysts in patients with autosomal dominant polycystic kidney disease. Am J Kidney Dis 34: 120–124.
    1. Heinonen PK, Vuento M, Maunola M, Ala-Houhala I (2002) Ovarian manifestations in women with autosomal dominant polycystic kidney disease. Am J Kidney Dis 40: 504–507.
    1. Vora N, Perrone R, Bianchi DW (2008) Reproductive Issues for Adults With Autosomal Dominant Polycystic Kidney Disease. Am J Kidney Dis 51: 307–318.
    1. Tao Y, Kim J, Schrier RW, Edelstein CL (2005) Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol 16: 46–51.
    1. Wahl PR, Serra AL, Le Hir M, Molle KD, Hall MN, et al. (2006) Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant 21: 598–604.
    1. Zafar I, Belibi FA, He Z, Edelstein CL (2009) Long-term rapamycin therapy in the Han:SPRD rat model of polycystic kidney disease (PKD). Nephrol Dial Transplant 24: 2349–2353.
    1. Wu M, Wahl PR, Le Hir M, Waeckerle-Men Y, Wüthrich RP, et al. (2007) Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kidney Blood Press Res 30: 253–259.
    1. Wu M, Arcaro A, Varga Z, Vogetseder A, Le Hir M, et al. (2009) Pulse mTOR inhibitor treatment effectively controls cyst growth but leads to severe parenchymal and glomerular hypertrophy in rat polycystic kidney disease. Am J Physiol Renal Physiol 297: F1597–1605.
    1. Shillingford JM, Piontek KB, Germino GG, Weimbs T (2010) Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J Am Soc Nephrol 21: 489–497.
    1. Serra AL, Poster D, Kistler AD, Krauer F, Raina S, et al. (2010) Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N Engl J Med 363: 820–829.
    1. Shivaswamy V, Ochsner L, Maroni D, Wang C, Passer J, et al. (2011) Tacrolimus and sirolimus induce reproductive abnormalities in female rats. Transplantation 91: 1333–1339.
    1. Braun M, Young J, Reiner CS, Poster D, Wuthrich RP, et al. (2012) Ovarian toxicity from sirolimus. N Engl J Med 366: 1062–1064.
    1. Ravine D, Gibson RN, Walker RG, Sheffield LJ, Kincaid-Smith P, et al. (1994) Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic kidney disease. Lancet 343: 824–827.
    1. Serra AL, Kistler AD, Poster D, Struker M, Wuthrich RP, et al. (2007) Clinical proof-of-concept trial to assess the therapeutic effect of sirolimus in patients with autosomal dominant polycystic kidney disease: SUISSE ADPKD study. BMC Nephrology 8: 13.
    1. Diamanti-Kandarakis E, Kouli CR, Bergiele AT, Filandra FA, Tsianateli TC, et al. (1999) A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J Clin Endocrinol Metab 84: 4006–4011.
    1. Joffe H, Cohen LS, Suppes T, McLaughlin WL, Lavori P, et al. (2006) Valproate is associated with new-onset oligoamenorrhea with hyperandrogenism in women with bipolar disorder. Biol Psychiatry 59: 1078–1086.
    1. Kistler AD, Poster D, Krauer F, Weishaupt D, Raina S, et al. (2009) Increases in kidney volume in autosomal dominant polycystic kidney disease can be detected within 6 months. Kidney Int 75: 235–241.
    1. Carlin JB, Wolfe R, Coffey C, Patton GC (1999) Analysis of binary outcomes in longitudinal studies using weighted estimating equations and discrete-time survival methods: prevalence and incidence of smoking in an adolescent cohort. Stat Med 18: 2655–2679.
    1. Greenland S, Schwartzbaum JA, Finkle WD (2000) Problems due to small samples and sparse data in conditional logistic regression analysis. Am J Epidemiol 151: 531–539.
    1. Nemes S, Jonasson JM, Genell A, Steineck G (2009) Bias in odds ratios by logistic regression modelling and sample size. BMC Med Res Methodol 9: 56.
    1. Heinze G (2006) A comparative investigation of methods for logistic regression with separated or nearly separated data. Stat Med 25: 4216–4226.
    1. Vollset SE, Hirji KF, Afifi AA (1991) Evaluation of exact and asymptotic interval estimators in logistic analysis of matched case-control studies. Biometrics 47: 1311–1325.
    1. Wahl P, Serra A, Le Hir M, Molle K, Hall M, et al. (2006) Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant 21: 598–604.
    1. Solomon CG, Hu FB, Dunaif A, Rich-Edwards JE, Stampfer MJ, et al. (2002) Menstrual cycle irregularity and risk for future cardiovascular disease. J Clin Endocrinol Metab 87: 2013–2017.
    1. Popat VB, Prodanov T, Calis KA, Nelson LM (2008) The menstrual cycle: a biological marker of general health in adolescents. Ann N Y Acad Sci 1135: 43–51.
    1. Poster D, Kistler AD, Krauer F, Blumenfeld JD, Rennert H, et al. (2009) Kidney function and volume progression in unilateral autosomal dominant polycystic kidney disease with contralateral renal agenesis or hypoplasia: a case series. Am J Kidney Dis 54: 450–458.
    1. Wong H, Vivian L, Weiler G, Filler G (2004) Patients with autosomal dominant polycystic kidney disease hyperfiltrate early in their disease. Am J Kidney Dis 43: 624–628.
    1. Milutinovic J, Fialkow PJ, Agodoa LY, Phillips LA, Bryant JI (1983) Fertility and pregnancy complications in women with autosomal dominant polycystic kidney disease. Obstet Gynecol 61: 566–570.
    1. Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369: 1287–1301.
    1. Hou X, Arvisais EW, Davis JS (2010) Luteinizing hormone stimulates mammalian target of rapamycin signaling in bovine luteal cells via pathways independent of AKT and mitogen-activated protein kinase: modulation of glycogen synthase kinase 3 and AMP-activated protein kinase. Endocrinology 151: 2846–2857.
    1. Kayampilly PP, Menon KM (2007) Follicle-stimulating hormone increases tuberin phosphorylation and mammalian target of rapamycin signaling through an extracellular signal-regulated kinase-dependent pathway in rat granulosa cells. Endocrinology 148: 3950–3957.
    1. Yu J, Yaba A, Kasiman C, Thomson T, Johnson J (2011) mTOR controls ovarian follicle growth by regulating granulosa cell proliferation. PLoS One 6: e21415.
    1. Arvisais EW, Romanelli A, Hou X, Davis JS (2006) AKT-independent phosphorylation of TSC2 and activation of mTOR and ribosomal protein S6 kinase signaling by prostaglandin F2alpha. J Biol Chem 281: 26904–26913.
    1. Adhikari D, Flohr G, Gorre N, Shen Y, Yang H, et al. (2009) Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod 15: 765–770.
    1. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 19: 41–47.
    1. Tataranni T, Biondi G, Cariello M, Mangino M, Colucci G, et al. (2011) Rapamycin-induced hypophosphatemia and insulin resistance are associated with mTORC2 activation and Klotho expression. Am J Transplant 11: 1656–1664.
    1. Johnston O, Rose CL, Webster AC, Gill JS (2008) Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol 19: 1411–1418.
    1. Goodarzi MO, Jones MR, Chen YD, Azziz R (2008) First evidence of genetic association between AKT2 and polycystic ovary syndrome. Diabetes Care 31: 2284–2287.
    1. Lima MH, Souza LC, Caperuto LC, Bevilacqua E, Gasparetti AL, et al. (2006) Up-regulation of the phosphatidylinositol 3-kinase/protein kinase B pathway in the ovary of rats by chronic treatment with hCG and insulin. J Endocrinol 190: 451–459.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, et al. (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150: 604–612.

Source: PubMed

3
Subscribe