Study of vertebral fracture and Scanographic Bone Attenuation Coefficient in rheumatoid arthritis and ankylosing spondylitis vs. controls

Marine Fauny, Eliane Albuisson, Elodie Bauer, Julia Perrier-Cornet, Isabelle Chary-Valckenaere, Damien Loeuille, Marine Fauny, Eliane Albuisson, Elodie Bauer, Julia Perrier-Cornet, Isabelle Chary-Valckenaere, Damien Loeuille

Abstract

The objective of this study is to identify the prevalence of vertebral fractures (VFs) and to measure the scanographic bone attenuation coefficient of the first lumbar vertebra (SBAC-L1) based CT-scan, a biomarker of bone fragility in patients with rheumatoid arthritis (RA) and ankylosing spondylitis (AS) and in a control group. This monocentric and retrospective study included patients with RA and AS, based on ACR/EULAR or New-York criteria, respectively. A control group was constituted. All of the patients received a CT-scan. VFs were determined via CT-scans according to the Genant classification, and the SBAC-L1 was measured in Hounsfield units (HU). SBAC-L1 ≤145 HU (fracture threshold) defined patients at risk of VFs. 244 patients were included (105 RA, 83 AS, 56 controls). Of the 4.365 vertebrae studied, 66 osteoporotic VFs were found in 36 patients: 18 (17.1%) RA, 13 (15.7%) AS and 5 (8.9%) controls. The mean SBAC-L1 was 142.2 (±48.4) HU for RA, 142.8 (±48.2) for AS, both of which were significantly lower than that of the control group (161.8 (±42.7) HU). Of the 36 patients with VFs and rheumatism, 28% had a T-score ≤-2.5 SD and 71.4% a SBAC-L1 ≤145 HU. A T-score ≤-2.5 SD and a SBAC-L1 ≤145 HU were associated with VF (OR = 3.07 (CI 95%: 1.07; 8.81), and 2.31 (CI 95%: 1.06; 5.06)), respectively. The SBAC-L1 was significantly lower in the RA and AS groups than in the control group. Furthermore, SBAC-L1 ≤145 HU was associated with a higher risk of VFs, with an odds ratio similar to that of a DXA.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Spine DXA examples. (A) Spine DXA from patients without lumbar spine involvement. (B) Spine DXA from patient with osteophytes in L2 and L3 responsible for increase of spine mineral density on spine DXA. (C,D) DXA from patients with ankylosed spine, source of misinterpretation for DXA spine results.
Figure 2
Figure 2
Flow chart for the group RA (A) and AS (B) AS: ankylosing spondylitis, RA: Rheumatoid Arthritis; CT: Computed Tomography.
Figure 3
Figure 3
VFs grade (Genant classification) (A) and location (B) according to the different groups. AS: ankylosing spondylitis, RA: Rheumatoid Arthritis. T: Thoracic vertebra, L: Lumbar vertebra.
Figure 4
Figure 4
Spine T-score (A) and SBAC-L1 (B) distribution of the patients with VFs for the different groups. The black circle represents the grade 1 VFs. (A) The red line stands for the threshold of −2.5 SD, the definition of osteoporosis on DEXA. (B) The red line stands for the fracture threshold of 145 HU. Note that patient no. 7 did not have an available SBAC-L1. AS: Ankylosing spondylitis, RA: Rheumatoid Arthritis. VF: Vertebral Fracture, SBAC-L1: Scanographic Bone Attenuation Coefficient of the first lumbar vertebra, HU: Hounsfield Unit, DEXA: Dual Energy X-ray Absorptiometry.

References

    1. Toledano E, et al. A meta-analysis of mortality in rheumatic diseases. Reumatol Clin. 2012;8(6):334–41. doi: 10.1016/j.reuma.2012.05.006.
    1. Dougado M, et al. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: results of an international, cross-sectional study (COMORA) Ann Rheum Dis. 2014;73:62–8. doi: 10.1136/annrheumdis-2013-204223.
    1. McKeown E, et al. Quality assurance study of the use of preventive therapies in glucocorticoid-induced osteoporosis in early inflammatory arthritis: results from the CATCH cohort. Rheumatol Oxf Engl. 2012;51:1662–9. doi: 10.1093/rheumatology/kes079.
    1. Van der Weijden MA, et al. High prevalence of low bone mineral density in patients within 10 years of onset of ankylosing spondylitis: a systematic review. Clin Rheumatol. 2012;31(11):1529–35. doi: 10.1007/s10067-012-2018-0.
    1. Ghozlani I, et al. Prevalence and Risk Factors of Osteoporosis and Vertebral Fractures in Patients with Ankylosing Spondylitis. Bone. 2009;44(5):772–6. doi: 10.1016/j.bone.2008.12.028.
    1. Ardizzone M, Javier RM, Kuntz JL. Ankylosing spondylitis and osteoporosis. Rev Med Interne. 2006;27(5):392–9. doi: 10.1016/j.revmed.2005.09.008.
    1. Klingberg E, et al. Osteoporosis in ankylosing spondylitis - prevalence, risk factors and methods of assessment. Arthritis Res Ther. 2012;14(3):R108. doi: 10.1186/ar3833.
    1. Wendling D, et al. 2018 update of French Society for Rheumatology (SFR) recommendations about the everyday management of patients with ankylosing spondylarthritis. Joint Bone Spine. 2018;85(3):275–284. doi: 10.1016/j.jbspin.2018.01.006.
    1. Gough A, et al. Osteoclastic activation is the principal mechanism leading to secondary osteoporosis in rheumatoid arthritis. J Rheumatol. 1998;25:1282–9.
    1. Armour KE, Van’T Hof RJ, Grabowski PS, Reid DM, Ralston SH. Evidence for a pathogenic role of nitric oxide in inflammation-induced osteoporosis. J Bone Miner Res. 1999;14:2137–42. doi: 10.1359/jbmr.1999.14.12.2137.
    1. De Keyser F, et al. Gut inflammation and spondyloarthropathies. Curr Rheumatol Rep. 2002;4:525–32. doi: 10.1007/s11926-002-0061-6.
    1. Lange U, Teichmann J, Strake H. Correlation between plasma TNF-alpha, IGF-1, biochemical markers of bone metabolism, markers of inflammation/disease activity, and clinical manifestations in ankylosing spondylitis. Eur J Med Res. 2000;29:507–11.
    1. Lange U, Jung O, Teichmann J, Neeck G. Relationships between disease activity and serum levels of vitamine D metabolites and parathyroid hormone in ankylosing spondylitis. Osteoporos Int. 2001;12:1031–5. doi: 10.1007/s001980170013.
    1. Franck H, Meurer T, Hofbauer LC. Evaluation of bone mineral density, hormones, biochemical marker bone metabolism, and osteprotegerin serum levels in patients with ankylosing spondilitis. J Rheumatol. 2004;31:2236–41.
    1. Verhoeven AC, Boers M. Limited bone loss due to corticosteroids, a systematic review of prospective studies in rheumatoid arthritis and other diseases. J Rheumatol. 1997;24:1495–503.
    1. Pickhardt PJ, et al. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med. 2013;158(8):588–95. doi: 10.7326/0003-4819-158-8-201304160-00003.
    1. Fauny M, et al. Vertebral fracture prevalence and measurement of the scanographic bone attenuation coefficient on CT-scan in patients with systemic sclerosis. Rheumatol Int. 2018;38(10):1901–10. doi: 10.1007/s00296-018-4139-5.
    1. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48. doi: 10.1002/jbmr.5650080915.
    1. Juan M, Yanchun L, Xiaoxu Y, Yuewu L. Evaluating osteoporotic fracture risk with the Fracture Risk Assessment Tool in Chinese patients with rheumatoid arthritis. Medicine (Baltimore). 2017;96(18):e6677. doi: 10.1097/MD.0000000000006677.
    1. Hauser B, Riches PL, Wilson JF, Horne AE, Ralston SH. Prevalence and clinical prediction of osteoporosis in a contemporary cohort of patients with rheumatoid arthritis. Rheumatology (Oxford). 2014;53(10):1759–66. doi: 10.1093/rheumatology/keu162.
    1. Mobini M, Kashi Z, Ghobadifar A. Prevalence and associated factors of osteoporosis in female patients with rheumatoid arthritis. Caspian J Intern Med. 2012;3(3):447–450.
    1. Moltó A, et al. Prevalence of comorbidities and evaluation of their screening in ankylosing spondylarthritis: results of the international cross-sectional ASAS-COMOAS study. Ann Rheum Dis. 2016;75(6):1016–23. doi: 10.1136/annrheumdis-2015-208174.
    1. Ulu MA, Baz I, Dilek B, Çevik R. Prevalence of osteoporosis and vertebral fractures and related factors in patients with ankylosing spondylitis. Chin Med J (Engl). 2014;127(15):2740–7.
    1. Davey-Ranasinghe N, Deodhar A. Osteoporosis and vertebral fractures in ankylosing spondylitis. Curr Opin Rheumatol. 2013;25(4):509–16. doi: 10.1097/BOR.0b013e3283620777.
    1. Lespessailles E, et al. Prevalence and features of osteoporosis in the French general population: The Instant study. Joint Bone Spine. 2009;76(4):394–400. doi: 10.1016/j.jbspin.2008.10.008.
    1. Ferrari R. Prevalence of osteoporosis in men aged 65–75 in a primary care setting. A practice audit after application of the Canadian 2010 guidelines for osteoporosis screening. Clin Rheumatol. 2015;34(3):523–7. doi: 10.1007/s10067-014-2642-y.
    1. Netgen. Ostéoporose chez l’homme [Internet]. Revue Médicale Suisse. [cité 2 août 2019]. Disponible sur, .
    1. Burns JE, Yao J, Summers RM. Vertebral body compression fractures and bone density: automated detection and classification on CT images. Radiology. 2017;284:788–797. doi: 10.1148/radiol.2017162100.
    1. Perrier-Cornet, J., Omorou, A. Y., Fauny, M., Loeuille, D. & Chary-Valckenaere, I. Opportunistic screening for osteoporosis using thoraco-abdomino-pelvic CT-scan assessing the vertebral density in rheumatoid arthritis patients. Osteoporos Int. 13 (2019).
    1. van Staa TP, Geusens P, Bijlsma JW, Leufkens HG, Cooper C. Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum. 2006;54(10):3104–12. doi: 10.1002/art.22117.
    1. Mohammad A, et al. The prevalence of vertebral fracture on vertebral fracture assessment imaging in a large cohort of patients with rheumatoid arthritis. Rheumatology (Oxford). 2014;53(5):821–7. doi: 10.1093/rheumatology/ket353.
    1. Bultink IE, Lems WF. Performance of vertebral fracture assessment in addition to dual energy X-ray absorptiometry in patients with rheumatoid arthritis. Rheumatology (Oxford). 2014;53(5):775–6. doi: 10.1093/rheumatology/ket448.
    1. El Maghraoui A, et al. Prevalence and risk factors of vertebral fractures in women with rheumatoid arthritis using vertebral fracture assessment. Rheumatology (Oxford). 2010;49(7):1303–10. doi: 10.1093/rheumatology/keq084.
    1. Dirven L, et al. Prevalence of vertebral fractures in a disease activity steered cohort of patients with early active rheumatoid arthritis. BMC Musculoskelet Disord. 2012;13:125. doi: 10.1186/1471-2474-13-125.
    1. Pray C, Feroz NI, Nigil Haroon N. Bone Mineral Density and Fracture Risk in Ankylosing Spondylitis: A Meta-Analysis. Calcif Tissue Int. 2017;101(2):182–192. doi: 10.1007/s00223-017-0274-3.
    1. O’Neill TW, et al. The prevalence of vertebral deformity in european men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res. 1996;11(7):1010–8. doi: 10.1002/jbmr.5650110719.
    1. Xue AL, et al. Bone fracture risk in patients with rheumatoid arthritis: A meta-analysis. Medicine (Baltimore). 2017;96(36):e6983. doi: 10.1097/MD.0000000000006983.
    1. Jin S, et al. Incidence of fractures among patients with rheumatoid arthritis: a systematic review and meta-analysis. Osteoporos Int. 2018;29(6):1263–1275. doi: 10.1007/s00198-018-4473-1.
    1. Weiss RJ, Wick MC, Ackermann PW, Montgomery SM. Increased fracture risk in patients with rheumatic disorders and other inflammatory diseases–a case-control study with 53,108 patients with fracture. J Rheumatol. 2010;37(11):2247–50. doi: 10.3899/jrheum.100363.
    1. Bultink IE, Vis M, van der Horst-Bruinsma IE, Lems WF. Inflammatory rheumatic disorders and bone. Curr Rheumatol Rep. 2012;14(3):224–30. doi: 10.1007/s11926-012-0252-8.
    1. Kawai VK, Stein CM, Perrien DS, Griffin MR. Effects of anti-tumor necrosis factor α agents on bone. Curr Opin Rheumatol. 2012;24(5):576–85. doi: 10.1097/BOR.0b013e328356d212.

Source: PubMed

3
Subscribe