Pericoronary fat inflammation and Major Adverse Cardiac Events (MACE) in prediabetic patients with acute myocardial infarction: effects of metformin

Celestino Sardu, Nunzia D'Onofrio, Michele Torella, Michele Portoghese, Francesco Loreni, Simone Mureddu, Giuseppe Signoriello, Lucia Scisciola, Michelangela Barbieri, Maria Rosaria Rizzo, Marilena Galdiero, Marisa De Feo, Maria Luisa Balestrieri, Giuseppe Paolisso, Raffaele Marfella, Celestino Sardu, Nunzia D'Onofrio, Michele Torella, Michele Portoghese, Francesco Loreni, Simone Mureddu, Giuseppe Signoriello, Lucia Scisciola, Michelangela Barbieri, Maria Rosaria Rizzo, Marilena Galdiero, Marisa De Feo, Maria Luisa Balestrieri, Giuseppe Paolisso, Raffaele Marfella

Abstract

Background/objectives: Pericoronary adipose tissue inflammation might lead to the development and destabilization of coronary plaques in prediabetic patients. Here, we evaluated inflammation and leptin to adiponectin ratio in pericoronary fat from patients subjected to coronary artery bypass grafting (CABG) for acute myocardial infarction (AMI). Furthermore, we compared the 12-month prognosis of prediabetic patients compared to normoglycemic patients (NG). Finally, the effect of metformin therapy on pericoronary fat inflammation and 12-months prognosis in AMI-prediabetic patients was also evaluated.

Methods: An observational prospective study was conducted on patients with first AMI referred for CABG. Participants were divided in prediabetic and NG-patients. Prediabetic patients were divided in two groups; never-metformin-users and current-metformin-users receiving metformin therapy for almost 6 months before CABG. During the by-pass procedure on epicardial coronary portion, the pericoronary fat was removed from the surrounding stenosis area. The primary endpoints were the assessments of Major-Adverse-Cardiac-Events (MACE) at 12-month follow-up. Moreover, inflammatory tone was evaluated by measuring pericoronary fat levels of tumor necrosis factor-α (TNF-α), sirtuin 6 (SIRT6), and leptin to adiponectin ratio. Finally, inflammatory tone was correlated to the MACE during the 12-months follow-up.

Results: The MACE was 9.1% in all prediabetic patients and 3% in NG-patients. In prediabetic patients, current-metformin-users presented a significantly lower rate of MACE compared to prediabetic patients never-metformin-users. In addition, prediabetic patients showed higher inflammatory tone and leptin to adiponectin ratio in pericoronary fat compared to NG-patients (P < 0.001). Prediabetic never-metformin-users showed higher inflammatory tone and leptin to adiponectin ratio in pericoronary fat compared to current-metformin-users (P < 0.001). Remarkably, inflammatory tone and leptin to adiponectin ratio was significantly related to the MACE during the 12-months follow-up.

Conclusion: Prediabetes increase inflammatory burden in pericoronary adipose tissue. Metformin by reducing inflammatory tone and leptin to adiponectin ratio in pericoronary fat may improve prognosis in prediabetic patients with AMI. Trial registration Clinical Trial NCT03360981, Retrospectively Registered 7 January 2018.

Keywords: Acute myocardial infarction; Adipokines; Inflammation; Metformin; Pericoronary fat; Prediabetes.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow-chart of the study protocol
Fig. 2
Fig. 2
a Leptin to adiponectin ratio, in pericoronary fat specimens from 180 normal glucose patients and 180 prediabetic patients matched with propensity score analysis (PSM). (Boxplot, a plot type that displays the median, 25th, and 75th percentiles and range). *P < 0.01 vs. normal glucose patients. b Leptin to adiponectin ratio, in pericoronary fat specimens from 58 prediabetic never metformin users, and 58 prediabetic metformin users. ‡P < 0.01 vs. never metformin users. Data are mean ± SD
Fig. 3
Fig. 3
a Tumor necrosis factor-α (TNF-α) levels, in pericoronary fat specimens from 180 normal glucose patients and 180 prediabetic patients *P < 0.01 vs. normal glucose patients. b TNF-α levels, in pericoronary fat specimens from 58 prediabetic never metformin users and current metformin users. ‡P<0.01 vs. never metformin users. Data are mean ± SD
Fig. 4
Fig. 4
a Sirtuin-6 (SIRT6) levels, in pericoronary fat specimens from 180 normal glucose patients and 180 prediabetic patients matched with propensity score analysis (PSM). *P < 0.01 vs. normal glucose patients. b SIRT6 levels, in pericoronary fat specimens from 58 prediabetic never metformin users, and 58 prediabetic metformin users. ‡P < 0.01 vs never metformin users. Data are mean ± SD
Fig. 5
Fig. 5
a Regression analysis evidences a relationship between pericoronary fat leptin to adiponectin ratio and Tumor necrosis factor-α (TNF-α) levels in the overall study population. This analysis showed that the values of pericoronary TNF-α content (dependent variables) changed when pericoronary fat leptin to adiponectin ratio (independent variable) varied, while the other independent variables are held fixed. b Regression analysis evidences a relationship between pericoronary fat leptin to adiponectin ratio and sirtuin 6 (SIRT6) levels in the overall study population. This analysis showed that the values of pericoronary SIRT6 content (dependent variables) changed when fat pericoronary leptin to adiponectin ratio (independent variable) varied, while the other independent variables are held fixed
Fig. 6
Fig. 6
a Kaplan–Meier survival curves in PSM normal glucose and prediabetic patients. b Kaplan–Meier survival curves in PSM prediabetic never metformin users and prediabetic current metformin users. Overall survival and event-free survival are presented using, and compared using the log-rank test
Fig. 7
Fig. 7
Kaplan–Meier survival curves according to TNF-α (a), SIRT6 (b) and leptin (c) and adiponectin (d) terziles. SPSS version 23.0 (IBM statistics) was used for all statistical analyses. Overall survival and event-free survival are presented using, and compared using the log-rank test

References

    1. Leal J, Morrow LM, Khurshid W, Pagano E, Feenstra T. Decision models of prediabetes populations: a systematic review. Diabetes Obes Metab. 2019 doi: 10.1111/dom.13684.
    1. Huang Y, Cai X, Mai W, Li M, Hu Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis. BMJ. 2016;355:i5953. doi: 10.1136/bmj.i5953.
    1. Ohyama K, Matsumoto Y, Takanami K, Ota H, Nishimiya K, Sugisawa J, Tsuchiya S, Amamizu H, Uzuka H, Suda A, Shindo T, Kikuchi Y, Hao K, Tsuburaya R, Takahashi J, Miyata S, Sakata Y, Takase K, Shimokawa H, Mazurek T, Opolski G. Pericoronary adipose tissue: a novel therapeutic target in obesity-related coronary atherosclerosis. J Am Coll Nutr. 2015;34:244–254. doi: 10.1080/07315724.2014.933685.
    1. Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019 doi: 10.1038/s41574-019-0230-6.
    1. Yang W, Li Y, Wang JY, Han R, Wang L. Circulating levels of adipose tissue-derived inflammatory factors in elderly diabetes patients with carotid atherosclerosis: a retrospective study. Cardiovasc Diabetol. 2018;17:75. doi: 10.1186/s12933-018-0723-y.
    1. Boutens L, Stienstra R. Adipose tissue macrophages: going off track during obesity. Diabetologia. 2016;59:879–894. doi: 10.1007/s00125-016-3904-9.
    1. McLaughlin T, Deng A, Yee G. Inflammation in subcutaneous adipose tissue: relationship to adipose cell size. Diabetologia. 2010;53:369–377. doi: 10.1007/s00125-009-1496-3.
    1. Ohyama K, Matsumoto Y, Takanami K, Ota H, Nishimiya K, Sugisawa J, Tsuchiya S, Amamizu H, Uzuka H, Suda A, Shindo T, Kikuchi Y, Hao K, Tsuburaya R, Takahashi J, Miyata S, Sakata Y, Takase K, Shimokawa H. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina. J Am Coll Cardiol. 2018;71(4):414–425. doi: 10.1016/j.jacc.2017.11.046.
    1. Hong E, Lim C, Choi HY, Ku EJ, Kim KM, Moon JH, Lim S, Park KS, Jang HC, Choi SH. The amount of C1q-adiponectin complex is higher in the serum and the complex localizes to perivascular areas of fat tissues and the intimal-medial layer of blood vessels of coronary artery disease patients. Cardiovasc Diabetol. 2015;9(14):50. doi: 10.1186/s12933-015-0209-0.
    1. Shiota A, Shimabukuro M, Fukuda D, Soeki T, Sato H, Uematsu E, Hirata Y, Kurobe H, Maeda N, Sakaue H, Masuzaki H, Shimomura I, Sata M. Telmisartan ameliorates insulin sensitivity by activating the AMPK/SIRT1 pathway in skeletal muscle of obese db/db mice. Cardiovasc Diabetol. 2012;11:139. doi: 10.1186/1475-2840-11-139.
    1. Xiong X, Zhang C, Zhang Y, Fan R, Qian X, Dong XC. Fabp4-Cre-mediated Sirt6 deletion impairs adipose tissue function and metabolic homeostasis in mice. J Endocrinol. 2017;233:307–314. doi: 10.1530/JOE-17-0033.
    1. Kuang J, Zhang Y, Liu Q, Shen J, Pu S, Cheng S, Chen L, Li H, Wu T, Li R, et al. Fat-specific Sirt6 ablation sensitizes mice to high-fat diet-induced obesity and insulin resistance by inhibiting lipolysis. Diabetes. 2017;66:1159–1171. doi: 10.2337/db16-1225.
    1. Balestrieri ML, Rizzo MR, Barbieri M, Paolisso P, D’Onofrio N, Giovane A, et al. Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment. Diabetes. 2015;64:1395–1406. doi: 10.2337/db14-1149.
    1. Garvey WT, Van Gaal L, Leiter LA, Vijapurkar U, List J, Cuddihy R, Ren J, Davies MJ. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism. 2018;85:32–37. doi: 10.1016/j.metabol.2018.02.002.
    1. Ida S, Murata K, Kaneko R. Effects of metformin treatment on blood leptin and ghrelin levels in patients with type 2 diabetes mellitus. J Diabetes. 2017;9:526–535. doi: 10.1111/1753-0407.12445.
    1. Su JR, Lu ZH, Su Y, Zhao N, Dong CL, Sun L, Zhao SF, Li Y. Relationship of serum adiponectin levels and metformin therapy in patients with type 2 diabetes. Horm Metab Res. 2016;48:92–98. doi: 10.1055/s-0035-1569287.
    1. Grycel S, Markowski AR, Hady HR, Zabielski P, Kojta I, Imierska M, Górski J, Blachnio-Zabielska AU. Metformin treatment affects adipocytokine secretion and lipid composition in adipose tissues of diet-induced insulin-resistant rats. Nutrition. 2019;63–64:126–133. doi: 10.1016/j.nut.2019.01.019.
    1. Filardo G, Pollock BD, Edgerton J. Categorizing body mass index biases assessment of the association with post-coronary artery bypass graft mortality. Eur J Cardiothorac Surg. 2017;52:924–929. doi: 10.1093/ejcts/ezx138.
    1. American Diabetes Association Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13–S27. doi: 10.2337/dc18-S002.
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force Members; Document Reviewers 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975. doi: 10.1002/ejhf.592.
    1. Goeller M, Achenbach S, Cadet S, Kwan AC, Commandeur F, Slomka PJ, Gransar H, Albrecht MH, Tamarappoo BK, Berman DS, Marwan M, Dey D. Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease. JAMA Cardiol. 2018;3:858–863. doi: 10.1001/jamacardio.2018.1997.
    1. Iozzo P. Myocardial, perivascular, and epicardial fat. Diabetes Care. 2011;34(Suppl 2):S371–S379. doi: 10.2337/dc11-s250.
    1. Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, Margaritis M, Shirodaria C, Kampoli AM, Akoumianakis I, Petrou M, Sayeed R, Krasopoulos G, Psarros C, Ciccone P, Brophy CM, Digby J, Kelion A, Uberoi R, Anthony S, Alexopoulos N, Tousoulis D, Achenbach S, Neubauer S, Channon KM, Antoniades C. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017 doi: 10.1126/scitranslmed.aal2658.
    1. Marfella R, Di Filippo C, Portoghese M, Ferraraccio F, Rizzo MR, Siniscalchi M, Musacchio E, D’Amico M, Rossi F, Paolisso G. Tight glycemic control reduces heart inflammation and remodeling during acute myocardial infarction in hyperglycemic patients. J Am Coll Cardiol. 2009;53:1425–1436. doi: 10.1016/j.jacc.2009.01.041.
    1. Lee S, Norheim F, Langleite TM, Gulseth HL, Birkeland K, Drevon CA. Effects of long-term exercise on plasma adipokine levels and inflammation-related gene expression in subcutaneous adipose tissue in sedentary dysglycaemic, overweight men and sedentary normoglycaemic men of healthy weight. Diabetologia. 2019;62:1048–1064. doi: 10.1007/s00125-019-4866-5.
    1. Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15:507–524. doi: 10.1038/s41574-019-0230-6.
    1. Waldman M, Cohen K, Yadin D, Nudelman V, Gorfil D, Laniado-Schwartzman M, Kornwoski R, Aravot D, Abraham NG, Arad M, Hochhauser E. Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1α’. Cardiovasc Diabetol. 2018;17:111. doi: 10.1186/s12933-018-0754-4.
    1. Charytan DM, Solomon SD, Ivanovich P, Remuzzi G, Cooper ME, McGill JB, Parving HH, Parfrey P, Singh AK, Burdmann EA, Levey AS, Eckardt KU, McMurray JJV, Weinrauch LA, Liu J, Claggett B, Lewis EF, Pfeffer MA. Metformin use and cardiovascular events in patients with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2019 doi: 10.1111/dom.13642.
    1. Dziubak A, Wójcicka G, Wojtak A, Bełtowski J. Metabolic effects of metformin in the failing heart. Int J Mol Sci. 2018;19:2869. doi: 10.3390/ijms19102869.
    1. Mary A, Hartemann A, Liabeuf S, Aubert CE, Kemel S, Salem JE, Cluzel P, Lenglet A, Massy ZA, Lalau JD, Mentaverri R, Bourron O, Kamel S. Association between metformin use and below-the-knee arterial calcification score in type 2 diabetic patients. Cardiovasc Diabetol. 2017;16:24. doi: 10.1186/s12933-017-0509-7.
    1. Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin. 2018;39:1176–1188. doi: 10.1038/aps.2018.40.
    1. Xu W, Deng YY, Yang L, Zhao S, Liu J, Zhao Z, et al. Metformin ameliorates the proinflammatory state in patients with carotid artery atherosclerosis through sirtuin 1 induction. Transl Res. 2015;166(5):451–458. doi: 10.1016/j.trsl.2015.06.002.
    1. Sosnowska B, Mazidi M, Penson P, Gluba-Brzózka A, Rysz J, Banach M. The sirtuin family members SIRT1, SIRT3 and SIRT6: their role in vascular biology and atherogenesis. Atherosclerosis. 2017;265:275–282. doi: 10.1016/j.atherosclerosis.2017.08.027.
    1. Stöhr R, Mavilio M, Marino A, Casagrande V, Kappel B, Möllmann J, Menghini R, Melino G, Federici M. ITCH modulates SIRT6 and SREBP2 to influence lipid metabolism and atherosclerosis in ApoE null mice. Sci Rep. 2015;17(5):9023. doi: 10.1038/srep09023.
    1. Tseng E, Yeh HC, Maruthur NM. Metformin use in prediabetes among U.S. adults, 2005–2012. Diabetes Care. 2017;40(7):887–893. doi: 10.2337/dc16-1509.

Source: PubMed

3
Subscribe