ANGPTL3 and Cardiovascular Outcomes in Patients With Acute Coronary Syndrome and Obstructive Sleep Apnea

Qianwen Lv, Xiaolu Jiao, Huahui Yu, Qiuju Sun, Fan Li, Yu Wang, Haili Sun, Zhiyong Du, Linyi Li, Chaowei Hu, Ming Zhang, Shaoping Nie, Yanwen Qin, Qianwen Lv, Xiaolu Jiao, Huahui Yu, Qiuju Sun, Fan Li, Yu Wang, Haili Sun, Zhiyong Du, Linyi Li, Chaowei Hu, Ming Zhang, Shaoping Nie, Yanwen Qin

Abstract

Background The aim of this prospective study was to determine the impact of elevated ANGPTL3 (angiopoietin-like protein 3) on cardiovascular events (CVEs) following acute coronary syndrome (ACS) in patients with or without obstructive sleep apnea (OSA). Methods and Results A total of 1174 patients with ACS underwent successful percutaneous coronary intervention were included in this prospective cohort study (NCT03362385). Patients were categorized according to the apnea-hypopnea index (≥15 events/h, OSA) and further classified by ANGPTL3 levels. We analyzed the incidence of CVEs in patients with ACS according to the status of OSA and ANGPTL3. During a median of 3.1 years of follow-up, 217 (18.48%) CVEs occurred. The patients with ACS with OSA had higher ANGPTL3 levels than those without OSA (30.4 [20.9-43.2] versus 27.80 [19.1-41.5] ng/mL; P<0.001). In all patients with ACS, 29≤ANGPTL3<42 mg/dL and ANGPTL3≥42 mg/dL were associated with an increased risk of CVEs with hazard ratios (HRs) of 1.555 (95% CI, 1.010-2.498) and 2.489 (95% CI 1.613-3.840), respectively. When the status of OSA or not was incorporated in stratifying factors, 29≤ANGPTL3<42 mg/dL and ANGPTL3≥42 mg/dL were associated with a significantly higher risk of CVEs in patients with ACS with OSA (HR, 1.916 [95% CI, 1.019-3.601] and HR, 2.692 [95% CI, 1.379-4.503]) but not without OSA. Moreover, adding ANGPTL3 to the Cox model increased C-statistic values by 0.035 and 0.029 in the OSA group and all patients with ACS, respectively, but was not statistically improved in patients with ACS without OSA. Conclusions In conclusion, our study demonstrates a predictive impact of plasma ANGPTL3 on cardiovascular risk in patients with ACS, especially in patients with ACS with OSA. It might be of clinical value in refining risk stratification and tailoring treatment of patients with ACS and OSA. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03362385.

Keywords: acute coronary syndrome; angiopoietin‐like protein 3; cardiovascular outcome; obstructive sleep apnea; prediction.

Figures

Figure 1. Flowchart of the study.
Figure 1. Flowchart of the study.
ACS indicates acute coronary syndrome; AHI, apnea–hypopnea index; CPAP, continuous positive airway pressure; OSA, obstructive sleep apnea; and PCI, percutaneous coronary intervention.
Figure 2. Kaplan–Meier analysis for cardiovascular events…
Figure 2. Kaplan–Meier analysis for cardiovascular events according to OSA status (A) and different ANGPTL3 levels (B) (with 95% confidence limits, shaded area).
ANGPTL3 indicates angiopoietin‐like protein 3; OSA, obstructive sleep apnea; Q1, quartile 1 (ANGPTL3

Figure 3. Kaplan–Meier analysis for cardiovascular events…

Figure 3. Kaplan–Meier analysis for cardiovascular events according to different ANGPTL3 levels in patients with…

Figure 3. Kaplan–Meier analysis for cardiovascular events according to different ANGPTL3 levels in patients with ACS with OSA and without OSA.
ANGPTL3 indicates angiopoietin‐like protein 3; OSA, obstructive sleep apnea; Q1, quartile 1 (ANGPTL3
Similar articles
References
    1. Dewey F, Gusarova V, Dunbar R, O'Dushlaine C, Schurmann C, Gottesman O, McCarthy S, Van Hout C, Bruse S, Dansky H, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 2017;377:211–221. doi: 10.1056/NEJMoa1612790 - DOI - PMC - PubMed
    1. Graham M, Lee R, Brandt T, Tai L, Fu W, Peralta R, Yu R, Hurh E, Paz E, McEvoy B, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med. 2017;377:222–232. doi: 10.1056/NEJMoa1701329 - DOI - PubMed
    1. Mach F, Baigent C, Catapano A, Koskinas K, Casula M, Badimon L, Chapman M, De Backer G, Delgado V, Ference B, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. European Heart Journal. 2020;41:111–188. doi: 10.1093/eurheartj/ehz455 - DOI - PubMed
    1. Kersten S. Angiopoietin‐like 3 in lipoprotein metabolism. Nat Rev Endocrinol. 2017;13:731–739. doi: 10.1038/nrendo.2017.119 - DOI - PubMed
    1. Heinzer R, Vat S, Marques‐Vidal P, Marti‐Soler H, Andries D, Tobback N, Mooser V, Preisig M, Malhotra A, Waeber G, et al. Prevalence of sleep‐disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med. 2015;3:310–318. doi: 10.1016/S2213-2600(15)00043-0 - DOI - PMC - PubMed
Show all 46 references
Publication types
MeSH terms
Substances
Associated data
Full text links [x]
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 3. Kaplan–Meier analysis for cardiovascular events…
Figure 3. Kaplan–Meier analysis for cardiovascular events according to different ANGPTL3 levels in patients with ACS with OSA and without OSA.
ANGPTL3 indicates angiopoietin‐like protein 3; OSA, obstructive sleep apnea; Q1, quartile 1 (ANGPTL3

References

    1. Dewey F, Gusarova V, Dunbar R, O'Dushlaine C, Schurmann C, Gottesman O, McCarthy S, Van Hout C, Bruse S, Dansky H, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 2017;377:211–221. doi: 10.1056/NEJMoa1612790
    1. Graham M, Lee R, Brandt T, Tai L, Fu W, Peralta R, Yu R, Hurh E, Paz E, McEvoy B, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med. 2017;377:222–232. doi: 10.1056/NEJMoa1701329
    1. Mach F, Baigent C, Catapano A, Koskinas K, Casula M, Badimon L, Chapman M, De Backer G, Delgado V, Ference B, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. European Heart Journal. 2020;41:111–188. doi: 10.1093/eurheartj/ehz455
    1. Kersten S. Angiopoietin‐like 3 in lipoprotein metabolism. Nat Rev Endocrinol. 2017;13:731–739. doi: 10.1038/nrendo.2017.119
    1. Heinzer R, Vat S, Marques‐Vidal P, Marti‐Soler H, Andries D, Tobback N, Mooser V, Preisig M, Malhotra A, Waeber G, et al. Prevalence of sleep‐disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med. 2015;3:310–318. doi: 10.1016/S2213-2600(15)00043-0
    1. Bradley TD, Floras JS. Obstructive sleep apnoea and its cardiovascular consequences. Lancet. 2009;373:82–93. doi: 10.1016/S0140-6736(08)61622-0
    1. Zapater A, Sánchez‐de‐la‐Torre M, Benítez I, Targa A, Bertran S, Torres G, Aldomà A, De Batlle J, Abad J, Duran‐Cantolla J, et al. The effect of sleep apnea on cardiovascular events in different acute coronary syndrome phenotypes. Am J Respir Crit Care Med. 2020;202:1698–1706. doi: 10.1164/rccm.202004-1127OC
    1. Mazzotti D, Keenan B, Lim D, Gottlieb D, Kim J, Pack A. Symptom subtypes of obstructive sleep apnea predict incidence of cardiovascular outcomes. Am J Respir Crit Care Med. 2019;200:493–506. doi: 10.1164/rccm.201808-1509OC
    1. Nakashima H, Kurobe M, Minami K, Furudono S, Uchida Y, Amenomori K, Nunohiro T, Takeshita S, Maemura K. Effects of moderate‐to‐severe obstructive sleep apnea on the clinical manifestations of plaque vulnerability and the progression of coronary atherosclerosis in patients with acute coronary syndrome. Eur Heart J Acute Cardiovasc Care. 2015;4:75–84. doi: 10.1177/2048872614530865
    1. Lee C, Sethi R, Li R, Ho H, Hein T, Jim M, Loo G, Koo C, Gao X, Chandra S, et al. Obstructive sleep apnea and cardiovascular events after percutaneous coronary intervention. Circulation. 2016;133:2008–2017. doi: 10.1161/circulationaha.115.019392
    1. Du Y, Wang X, Li L, Hao W, Zhang H, Li Y, Qin Y, Nie S, Christopher T, Lopez B, et al. miRNA‐mediated suppression of a cardioprotective Cardiokine as a novel mechanism exacerbating post‐MI remodeling by sleep breathing disorders. Circ Res. 2020;126:212–228. doi: 10.1161/circresaha.119.315067
    1. Barros D, García‐Río F. Obstructive sleep apnea and dyslipidemia: from animal models to clinical evidence. Sleep. 2019;42. doi: 10.1093/sleep/zsy236
    1. Trzepizur W, Le Vaillant M, Meslier N, Pigeanne T, Masson P, Humeau M, Bizieux‐Thaminy A, Goupil F, Chollet S, Ducluzeau P, et al. Independent association between nocturnal intermittent hypoxemia and metabolic dyslipidemia. Chest. 2013;143:1584–1589. doi: 10.1378/chest.12-1652
    1. Phillips C, Yee B, Marshall N, Liu P, Sullivan D, Grunstein R. Continuous positive airway pressure reduces postprandial lipidemia in obstructive sleep apnea: a randomized, placebo‐controlled crossover trial. Am J Respir Crit Care Med. 2011;184:355–361. doi: 10.1164/rccm.201102-0316OC
    1. Xu H, Yi H, Guan J, Yin S. Effect of continuous positive airway pressure on lipid profile in patients with obstructive sleep apnea syndrome: a meta‐analysis of randomized controlled trials. Atherosclerosis. 2014;234:446–453. doi: 10.1016/j.atherosclerosis.2014.03.034
    1. Sánchez‐de‐la‐Torre M, Sánchez‐de‐la‐Torre A, Bertran S, Abad J, Duran‐Cantolla J, Cabriada V, Mediano O, Masdeu M, Alonso M, Masa J, et al. Effect of obstructive sleep apnoea and its treatment with continuous positive airway pressure on the prevalence of cardiovascular events in patients with acute coronary syndrome (ISAACC study): a randomised controlled trial. Lancet Respir Med. 2020;8:359–367. doi: 10.1016/s2213-2600(19)30271-1
    1. Peker Y, Glantz H, Eulenburg C, Wegscheider K, Herlitz J, Thunström E. Effect of positive airway pressure on cardiovascular outcomes in coronary artery disease patients with nonsleepy obstructive sleep apnea. the RICCADSA randomized controlled trial. Am J Respir Crit Care Med. 2016;194:613–620. doi: 10.1164/rccm.201601-0088OC
    1. McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, Mediano O, Chen R, Drager LF, Liu Z, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med. 2016;375:919–931. doi: 10.1056/NEJMoa1606599
    1. Stitziel N, Khera A, Wang X, Bierhals A, Vourakis A, Sperry A, Natarajan P, Klarin D, Emdin C, Zekavat S, et al. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69:2054–2063. doi: 10.1016/j.jacc.2017.02.030
    1. Miida T, Hirayama S. Impacts of angiopoietin‐like proteins on lipoprotein metabolism and cardiovascular events. Curr Opin Lipidol. 2010;21:70–75. doi: 10.1097/MOL.0b013e328333269e
    1. Ibanez B, James S, Agewall S, Antunes M, Bucciarelli‐Ducci C, Bueno H, Caforio A, Crea F, Goudevenos J, Halvorsen S, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST‐segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST‐segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39:119–177. doi: 10.1093/eurheartj/ehx393
    1. Roffi M, Patrono C, Collet J, Mueller C, Valgimigli M, Andreotti F, Bax J, Borger M, Brotons C, Chew D, et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST‐segment elevation: Task force for the Management of Acute Coronary Syndromes in patients presenting without persistent ST‐segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:267–315. doi: 10.1093/eurheartj/ehv320
    1. Yeghiazarians Y, Jneid H, Tietjens J, Redline S, Brown D, El‐Sherif N, Mehra R, Bozkurt B, Ndumele C, Somers V. Obstructive sleep apnea and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2021;144:e56–e67. doi: 10.1161/cir.0000000000000988
    1. Sánchez‐de‐la‐Torre M, Campos‐Rodriguez F, Barbé F. Obstructive sleep apnoea and cardiovascular disease. Lancet Respir Med. 2013;1:61–72. doi: 10.1016/s2213-2600(12)70051-6
    1. Fan J, Wang X, Ma X, Somers V, Nie S, Wei Y. Association of Obstructive Sleep Apnea with Cardiovascular Outcomes in patients with acute coronary syndrome. J Am Heart Assoc. 2019;8:e010826. doi: 10.1161/jaha.118.010826
    1. de Batlle J, Turino C, Sánchez‐de‐la‐Torre A, Abad J, Duran‐Cantolla J, McEvoy R, Antic N, Mediano O, Cabriada V, Masdeu M, et al. Predictors of obstructive sleep apnoea in patients admitted for acute coronary syndrome. Eur Respir J. 2017;49:1600550. doi: 10.1183/13993003.00550-2016
    1. Querejeta Roca G, Redline S, Punjabi N, Claggett B, Ballantyne C, Solomon S, Shah A. Sleep apnea is associated with subclinical myocardial injury in the community. The ARIC‐SHHS study. Am J Respir Crit Care Med. 2013;188:1460–1465. doi: 10.1164/rccm.201309-1572OC
    1. Lui M, Tse H, Lam D, Lau K, Chan C, Ip M. Continuous positive airway pressure improves blood pressure and serum cardiovascular biomarkers in obstructive sleep apnoea and hypertension. Eur Respir J. 2021;58:2003687. doi: 10.1183/13993003.03687-2020
    1. Nadeem R, Singh M, Nida M, Waheed I, Khan A, Ahmed S, Naseem J, Champeau D. Effect of obstructive sleep apnea hypopnea syndrome on lipid profile: a meta‐regression analysis. J Clin Sleep Med. 2014;10:475–489. doi: 10.5664/jcsm.3690
    1. Mehta N, Qamar A, Qu L, Qasim A, Mehta N, Reilly M, Rader D. Differential association of plasma angiopoietin‐like proteins 3 and 4 with lipid and metabolic traits. Arterioscler Thromb Vasc Biol. 2014;34:1057–1063. doi: 10.1161/atvbaha.113.302802
    1. Li J, Yang Y, Jiao X, Yu H, Du Y, Zhang M, Hu C, Wei Y, Qin Y. The clinical role of angiopoietin‐like protein 3 in evaluating coronary artery disease in patients with obstructive sleep apnea. Cardiovasc Drug Ther. 2020;34:773–780. doi: 10.1007/s10557-020-06991-1
    1. Chen M, Hsu B, Lee C, Wang J. High‐serum angiopoietin‐like protein 3 levels associated with cardiovascular outcome in patients with coronary artery disease. Int J Hypertens. 2020;2020:2980954–2980957. doi: 10.1155/2020/2980954
    1. Wilson P. Evidence of systemic inflammation and estimation of coronary artery disease risk: a population perspective. Am J Med. 2008;121:S15–S20. doi: 10.1016/j.amjmed.2008.06.012
    1. Zairis M, Ambrose J, Manousakis S, Stefanidis A, Papadaki O, Bilianou H, DeVoe M, Fakiolas C, Pissimissis E, Olympios C, et al. The impact of plasma levels of C‐reactive protein, lipoprotein (a) and homocysteine on the long‐term prognosis after successful coronary stenting: the global evaluation of new events and restenosis after stent implantation study. J Am Coll Cardiol. 2002;40:1375–1382. doi: 10.1016/s0735-1097(02)02267-2
    1. Pirillo A, Casula M, Olmastroni E, Norata G, Catapano A. Global epidemiology of dyslipidaemias. Nat Rev Cardiol. 2021;18:689–700. doi: 10.1038/s41569-021-00541-4
    1. Elshazly M, Mani P, Nissen S, Brennan D, Clark D, Martin S, Jones S, Quispe R, Donnellan E, Nicholls S, et al. Remnant cholesterol, coronary atheroma progression and clinical events in statin‐treated patients with coronary artery disease. Eur J Prev Cardiol. 2020;27:1091–1100. doi: 10.1177/2047487319887578
    1. Robciuc M, Maranghi M, Lahikainen A, Rader D, Bensadoun A, Öörni K, Oörni K, Metso J, Minicocci I, Ciociola E, et al. Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids. Arterioscler Thromb Vasc Biol. 2013;33:1706–1713. doi: 10.1161/atvbaha.113.301397
    1. Lin M, Lin H, Lee P, Weng P, Lee C, Lai T, Liu W, Chen C. Beneficial effect of continuous positive airway pressure on lipid profiles in obstructive sleep apnea: a meta‐analysis. Sleep Breath. 2015;19:809–817. doi: 10.1007/s11325-014-1082-x
    1. Mahley R, Huang Y. Atherogenic remnant lipoproteins: role for proteoglycans in trapping, transferring, and internalizing. J Clin Invest. 2007;117:94–98. doi: 10.1172/jci30889
    1. Al‐Terki A, Abu‐Farha M, AlKhairi I, Cherian P, Sriraman D, Shyamsundar A, Ali S, Almulla F, Tuomilehto J, Abubaker J. Increased level of angiopoietin like proteins 4 and 8 in people with sleep apnea. Front Endocrinol. 2018;9:651. doi: 10.3389/fendo.2018.00651
    1. Drager L, Li J, Shin M, Reinke C, Aggarwal N, Jun J, Bevans‐Fonti S, Sztalryd C, O'Byrne S, Kroupa O, et al. Intermittent hypoxia inhibits clearance of triglyceride‐rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea. Eur Heart J. 2012;33:783–790. doi: 10.1093/eurheartj/ehr097
    1. Drager L, Yao Q, Hernandez K, Shin M, Bevans‐Fonti S, Gay J, Sussan T, Jun J, Myers A, Olivecrona G, et al. Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin‐like 4. Am J Respir Crit Care Med. 2013;188:240–248. doi: 10.1164/rccm.201209-1688OC
    1. Raal F, Rosenson R, Reeskamp L, Hovingh G, Kastelein J, Rubba P, Ali S, Banerjee P, Chan K, Gipe D, et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med. 2020;383:711–720. doi: 10.1056/NEJMoa2004215
    1. Rosner G, Kirtane A, Genereux P, Lansky A, Cristea E, Gersh B, Weisz G, Parise H, Fahy M, Mehran R, et al. Impact of the presence and extent of incomplete angiographic revascularization after percutaneous coronary intervention in acute coronary syndromes: the acute catheterization and urgent intervention triage strategy (ACUITY) trial. Circulation. 2012;125:2613–2620. doi: 10.1161/circulationaha.111.069237
    1. Johns M. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14:540–545. doi: 10.1093/sleep/14.6.540
    1. Gensini G. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol. 1983;51:606. doi: 10.1016/s0002-9149(83)80105-2

Source: PubMed

3
Subscribe