Effect of a single dose of oral azithromycin on malaria parasitaemia in children: a randomized controlled trial

Boubacar Coulibaly, Ali Sié, Clarisse Dah, Mamadou Bountogo, Mamadou Ouattara, Adama Compaoré, Moustapha Nikiema, Jérôme Nankoné Tiansi, Nestor Dembélé Sibiri, Jessica M Brogdon, Elodie Lebas, Thuy Doan, Travis C Porco, Thomas M Lietman, Catherine E Oldenburg, Boubacar Coulibaly, Ali Sié, Clarisse Dah, Mamadou Bountogo, Mamadou Ouattara, Adama Compaoré, Moustapha Nikiema, Jérôme Nankoné Tiansi, Nestor Dembélé Sibiri, Jessica M Brogdon, Elodie Lebas, Thuy Doan, Travis C Porco, Thomas M Lietman, Catherine E Oldenburg

Abstract

Background: Azithromycin has recently been shown to reduce all-cause childhood mortality in sub-Saharan Africa. One potential mechanism of this effect is via the anti-malarial effect of azithromycin, which may help treat or prevent malaria infection. This study evaluated short- and longer-term effects of azithromycin on malaria outcomes in children.

Methods: Children aged 8 days to 59 months were randomized in a 1:1 fashion to a single oral dose of azithromycin (20 mg/kg) or matching placebo. Children were evaluated for malaria via thin and thick smear and rapid diagnostic test (for those with tympanic temperature ≥ 37.5 °C) at baseline and 14 days and 6 months after treatment. Malaria outcomes in children receiving azithromycin versus placebo were compared at each follow-up timepoint separately.

Results: Of 450 children enrolled, 230 were randomized to azithromycin and 220 to placebo. Children were a median of 26 months and 51% were female, and 17% were positive for malaria parasitaemia at baseline. There was no evidence of a difference in malaria parasitaemia at 14 days or 6 months after treatment. In the azithromycin arm, 20% of children were positive for parasitaemia at 14 days compared to 17% in the placebo arm (P = 0.43) and 7.6% vs. 5.6% in the azithromycin compared to placebo arms at 6 months (P = 0.47).

Conclusions: Azithromycin did not affect malaria outcomes in this study, possibly due to the individually randomized nature of the trial. Trial registration This study is registered at clinicaltrials.gov (NCT03676751; registered 19 September 2018).

Keywords: Azithromycin; Burkina Faso; Malaria; Randomized controlled trial.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
CONSORT flow diagram of study participants
Fig. 2
Fig. 2
Malaria parasitaemia prevalence (A) and parasite density in parasites/µl (restricted only to those with a positive smear for parasitaemia) (B) at baseline, 14 days, and 6 months by treatment arm. Black lines indicate azithromycin and gray lines indicate placebo

References

    1. Keenan JD, Bailey RL, West SK, Arzika A, Hart J, Weaver J, et al. Azithromycin to reduce childhood mortality in sub-Saharan Africa. N Engl J Med. 2018;378:1583–1592. doi: 10.1056/NEJMoa1715474.
    1. Keenan JD, Arzika AM, Maliki R, Adamou SE, Ibrahim F, Kiemago M, et al. Cause-specific mortality of children younger than 5 years in communities receiving biannual mass azithromycin treatment in Niger: verbal autopsy results from a cluster-randomised controlled trial. Lancet Glob Health. 2020;8:288–295. doi: 10.1016/S2214-109X(19)30540-6.
    1. Arzika AM, Maliki R, Boubacar N, Kane S, Cotter SY, Lebas E, et al. Biannual mass azithromycin distributions and malaria parasitemia in pre-school children in Niger: a cluster-randomized, placebo-controlled trial. PLoS Med. 2019;16:e1002835. doi: 10.1371/journal.pmed.1002835.
    1. Gaynor BD, Amza A, Kadri B, Nassirou B, Lawan O, Maman L, et al. Impact of mass azithromycin distribution on malaria parasitemia during the low-transmission season in Niger: a cluster-randomized trial. Am J Trop Med Hyg. 2014;90:846–851. doi: 10.4269/ajtmh.13-0379.
    1. Oldenburg CE, Amza A, Cooley G, Kadri B, Nassirou B, Arnold BF, et al. Biannual versus annual mass azithromycin distribution and malaria seroepidemiology among preschool children in Niger: a sub-study of a cluster randomized trial. Malar J. 2019;18:389. doi: 10.1186/s12936-019-3033-2.
    1. OBrien KS, Cotter SY, Amza A, Kadri B, Nassirou B, Stoller NE, et al. Mass azithromycin and malaria parasitemia in Niger: results from a community-randomized trial. Am J Trop Med Hyg. 2017;97:696–701. doi: 10.4269/ajtmh.16-0487.
    1. Oldenburg CE, Amza A, Kadri B, Nassirou B, Cotter SY, Stoller NE, et al. Annual versus biannual mass azithromycin distribution and malaria parasitemia during the peak transmission season among children in Niger. Pediatr Infect Dis J. 2018;37:506–510. doi: 10.1097/INF.0000000000001813.
    1. Dahl EL, Rosenthal PJ. Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrob Agents Chemother. 2007;51:3485–3490. doi: 10.1128/AAC.00527-07.
    1. Sidhu ABS, Sun Q, Nkrumah LJ, Dunne MW, Sacchettini JC, Fidock DA. In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. J Biol Chem. 2007;282:2494–2504. doi: 10.1074/jbc.M608615200.
    1. Rosenthal PJ. Azithromycin for malaria? Am J Trop Med Hyg. 2016;95:2–4. doi: 10.4269/ajtmh.16-0332.
    1. Anderson SL, Oloo AJ, Gordon DM, Ragama OB, Aleman GM, Berman JD, et al. Successful double-blinded, randomized, placebo-controlled field trial of azithromycin and doxycycline as prophylaxis for malaria in western Kenya. Clin Infect Dis. 1998;26:146–150. doi: 10.1086/516281.
    1. Kimani J, Phiri K, Kamiza S, Duparc S, Ayoub A, Rojo R, et al. Efficacy and safety of azithromycin–chloroquine versus sulfadoxine–pyrimethamine for intermittent preventive treatment of Plasmodium falciparum malaria infection in pregnant women in Africa: an open-label, randomized trial. PLoS ONE. 2016;11:e0157045-22. doi: 10.1371/journal.pone.0157045.
    1. Moore BR, Benjamin JM, Auyeung SO, Salman S, Yadi G, Grif S, et al. Safety, tolerability and pharmacokinetic properties of coadministered azithromycin and piperaquine in pregnant Papua New Guinean women. Br J Clin Pharmacol. 2016;82:199–212. doi: 10.1111/bcp.12910.
    1. Chandra R, Ansah P, Sagara I, Sie A, Tiono AB, Djimde AA, et al. Comparison of azithromycin plus chloroquine versus artemether–lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in children in Africa: a randomized, open-label study. Malar J. 2015;14:108. doi: 10.1186/s12936-015-0620-8.
    1. Phiri K, Kimani J, Mtove GA, Zhao Q, Rojo R, Robbins J, et al. Parasitological clearance rates and drug concentrations of a fixed dose combination of azithromycin–chloroquine in asymptomatic pregnant women with Plasmodium falciparum parasitemia: an open-label, non-comparative study in sub-Saharan Africa. PLoS ONE. 2016;11:e0165692. doi: 10.1371/journal.pone.0165692.
    1. Otte im Kampe EO, Muller O, Sie A, Becher H. Seasonal and temporal trends in all-cause and malaria mortality in rural Burkina Faso, 1998–2007. Malar J. 2015;14:300. doi: 10.1186/s12936-015-0818-9.
    1. Sie A, Louis VR, Gbangou A, Muller O, Niamba L, Stieglbauer G, et al. The health and demographic surveillance system (HDSS) in Nouna, Burkina Faso, 1993–2007. Glob Health Action. 2010;3:5284. doi: 10.3402/gha.v3i0.5284.
    1. Munoz B, Solomon AW, Zingeser J, Barwick R, Burton M, Bailey R, et al. Antibiotic dosage in trachoma control programs: height as a surrogate for weight in children. Invest Ophthalmol Vis Sci. 2002;44:1464–1469. doi: 10.1167/iovs.02-0234.
    1. Basilion EV, Kilima PM, Mecaskey JW. Simplification and improvement of height-based azithromycin treatment for paediatric trachoma. Trans R Soc Trop Med Hyg. 2005;99:6–12. doi: 10.1016/j.trstmh.2004.01.014.
    1. Sie A, Dah C, Bountogo M, Ouattara M, Nebie E, Coulibaly B, et al. Adverse events and clinic visits following a single dose of oral azithromycin among preschool children: a randomized placebo-controlled trial. Am J Trop Med Hyg. 2020;104:1137–1141.
    1. Chandramohan D, Dicko A, Zongo I, Sagara I, Cairns M, Keupfer I, et al. Effect of adding azithromycin to seasonal malaria chemoprevention. N Engl J Med. 2019;380:2197–2206. doi: 10.1056/NEJMoa1811400.
    1. Phiri MD, Cairns M, Zongo I, Nikiema F, Diarra M, Yerbanga RS, et al. The duration of protection from azithromycin against malaria, acute respiratory, gastrointestinal, and skin infections when given alongside seasonal malaria chemoprevention: a secondary analysis of data from a clinical trial in Hounde, Burkina Faso and Bougouni. Mali. Clin Infect Dis. 2020 doi: 10.1093/cid/ciaa1905.
    1. van Eijk A, Terlouw D. Azithromycin for treating uncomplicated malaria. Cochrane Database Syst Rev. 2011;2011:CD006688.
    1. Kshirsagar NA, Gogtay NJ, Moran D, Utz G, Sethia A, Sarkar S, et al. Treatment of adults with acute uncomplicated malaria with azithromycin and chloroquine in India, Colombia, and Suriname. Res Rep Trop Med. 2017;8:85–104.
    1. Tusting LS, Gething PW, Gibson HS, Greenwood B, Knudsen J, Lindsay SW, et al. Housing and child health in sub-Saharan Africa: a cross-sectional analysis. PLoS Med. 2020;17:e1003055. doi: 10.1371/journal.pmed.1003055.
    1. Kua KP, Lee SWH. Randomized trials of housing interventions to prevent malaria and Aedes-transmitted diseases: a systematic review and meta-analysis. PLoS ONE. 2021;16:e0244284. doi: 10.1371/journal.pone.0244284.

Source: PubMed

3
Subscribe