Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing

Yuan Xue, Arunkanth Ankala, William R Wilcox, Madhuri R Hegde, Yuan Xue, Arunkanth Ankala, William R Wilcox, Madhuri R Hegde

Abstract

Next-generation sequencing is changing the paradigm of clinical genetic testing. Today there are numerous molecular tests available, including single-gene tests, gene panels, and exome sequencing or genome sequencing. As a result, ordering physicians face the conundrum of selecting the best diagnostic tool for their patients with genetic conditions. Single-gene testing is often most appropriate for conditions with distinctive clinical features and minimal locus heterogeneity. Next-generation sequencing-based gene panel testing, which can be complemented with array comparative genomic hybridization and other ancillary methods, provides a comprehensive and feasible approach for heterogeneous disorders. Exome sequencing and genome sequencing have the advantage of being unbiased regarding what set of genes is analyzed, enabling parallel interrogation of most of the genes in the human genome. However, current limitations of next-generation sequencing technology and our variant interpretation capabilities caution us against offering exome sequencing or genome sequencing as either stand-alone or first-choice diagnostic approaches. A growing interest in personalized medicine calls for the application of genome sequencing in clinical diagnostics, but major challenges must be addressed before its full potential can be realized. Here, we propose a testing algorithm to help clinicians opt for the most appropriate molecular diagnostic tool for each scenario.

References

    1. PLoS One. 2013;8(1):e53083
    1. Hum Mutat. 2013 Jul;34(7):1035-42
    1. Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6549-54
    1. Hematology Am Soc Hematol Educ Program. 2011;2011:30-5
    1. Mol Genet Metab. 2013 Sep-Oct;110(1-2):78-85
    1. Nature. 2013 Jun 13;498(7453):220-3
    1. Genet Med. 2014 Feb;16(2):176-82
    1. Genet Med. 2014 Jul;16(7):510-5
    1. Genet Med. 2011 Mar;13(3):255-62
    1. J Med Genet. 2013 Sep;50(9):614-26
    1. Mol Psychiatry. 2013 Feb;18(2):141-53
    1. Genet Med. 2013 Nov;15(11):910-1
    1. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19096-101
    1. J Invest Dermatol. 2011 Oct;131(10):2017-25
    1. Mol Hum Reprod. 1997 Apr;3(4):321-32
    1. J Med Genet. 2012 Jun;49(6):353-61
    1. Annu Rev Genet. 2011;45:81-104
    1. BMC Med Genet. 2014 Jan 23;15:14
    1. J Med Genet. 2011 Sep;48(9):593-6
    1. Am J Hum Genet. 2013 Oct 3;93(4):631-40
    1. Arch Pathol Lab Med. 2013 Mar;137(3):415-33
    1. Eur J Hum Genet. 2012 May;20(5):490-7
    1. Genet Med. 2013 Nov;15(11):860-7
    1. J Pediatr. 1998 Apr;132(4):589-95
    1. Am J Hum Genet. 2013 Aug 8;93(2):368-83
    1. Genome Biol. 2011 Sep 14;12(9):228
    1. JAMA. 2011 Apr 20;305(15):1577-84
    1. Nature. 2014 Jul 17;511(7509):344-7
    1. Genet Med. 2013 Sep;15(9):721-8
    1. Mol Genet Genomic Med. 2014 Nov;2(6):497-503
    1. Epilepsia. 2012 Aug;53(8):1387-98
    1. Sci Transl Med. 2012 Oct 3;4(154):154ra135
    1. Am J Hum Genet. 2012 Dec 7;91(6):1022-32
    1. Science. 2012 Feb 17;335(6070):823-8
    1. Hum Mutat. 2012 May;33(5):884-6
    1. Genet Med. 2013 Nov;15(11):901-9
    1. Genet Med. 2014 Oct;16(10):741-50
    1. Genet Med. 2013 Jan;15(1):36-44
    1. PLoS One. 2013 Nov 12;8(11):e78496
    1. Am J Hum Genet. 2011 Dec 9;89(6):773-81
    1. N Engl J Med. 2013 Oct 17;369(16):1502-11

Source: PubMed

3
Subscribe