Number and Replating Capacity of Endothelial Colony-Forming Cells are Telomere Length Dependent: Implication for Human Atherogenesis

Simon Toupance, Stéphanie Simonici, Carlos Labat, Chloé Dumoulin, Tsung-Po Lai, Cécile Lakomy, Véronique Regnault, Patrick Lacolley, Françoise Dignat George, Florence Sabatier, Abraham Aviv, Athanase Benetos, TELARTA consortium †, Sylvie Gautier, Ghassan Watfa, Huguette Louis, Mélanie Folio, Margaux Schmitt, Oualid Ayad, Agnes Didier, Sandrine Vauthier, Nelly François, Sophie Visvikis-Siest, Maria G Stathopolou, Masayuki Kimura, Pascal M Rossi, Patricia Béranger, Serguei Malikov, Nicla Settembre, Jacques Hubert, Luc Frimat, Baptiste Bertrand, Mourad Boufi, Xavier Flecher, Nicolas Sadoul, Pascal Eschwege, Michèle Kessler, Irene P Tzanetakou, Ilias P Doulamis, Panagiotis Konstantopoulos, Aspasia Tzani, Marilina Korou, Anastasios Gkogkos, Konstantinos Perreas, Evangelos Menenakos, Georgios Samanidis, Michail Vasiloglou-Gkanis, Jeremy D Kark, Simon Verhulst, Simon Toupance, Stéphanie Simonici, Carlos Labat, Chloé Dumoulin, Tsung-Po Lai, Cécile Lakomy, Véronique Regnault, Patrick Lacolley, Françoise Dignat George, Florence Sabatier, Abraham Aviv, Athanase Benetos, TELARTA consortium †, Sylvie Gautier, Ghassan Watfa, Huguette Louis, Mélanie Folio, Margaux Schmitt, Oualid Ayad, Agnes Didier, Sandrine Vauthier, Nelly François, Sophie Visvikis-Siest, Maria G Stathopolou, Masayuki Kimura, Pascal M Rossi, Patricia Béranger, Serguei Malikov, Nicla Settembre, Jacques Hubert, Luc Frimat, Baptiste Bertrand, Mourad Boufi, Xavier Flecher, Nicolas Sadoul, Pascal Eschwege, Michèle Kessler, Irene P Tzanetakou, Ilias P Doulamis, Panagiotis Konstantopoulos, Aspasia Tzani, Marilina Korou, Anastasios Gkogkos, Konstantinos Perreas, Evangelos Menenakos, Georgios Samanidis, Michail Vasiloglou-Gkanis, Jeremy D Kark, Simon Verhulst

Abstract

Background Short leukocyte telomere length (TL) is associated with atherosclerotic cardiovascular disease. Endothelial repair plays a key role in the development of atherosclerosis. The objective was to examine associations between TL and proliferative dynamics of endothelial colony-forming cells (ECFCs), which behave as progenitor cells displaying endothelial repair activity. Methods and Results To isolate ECFCs, we performed a clonogenic assay on blood samples from 116 participants (aged 24-94 years) in the TELARTA (Telomere in Arterial Aging) cohort study. We detected no ECFC clones in 29 (group 1), clones with no replating capacity in other 29 (group 2), and clones with replating capacity in the additional 58 (group 3). Leukocyte TL was measured by Southern blotting and ECFCs (ECFC-TL). Age- and sex-adjusted leukocyte TL (mean±SEM) was the shortest in group 1 (6.51±0.13 kb), longer in group 2 (6.69±0.13 kb), and the longest in group 3 (6.78±0.09 kb) (P<0.05). In group 3, ECFC-TL was associated with the number of detected clones (P<0.01). ECFC-TL (7.98±0.13 kb) was longer than leukocyte TL (6.74±0.012 kb) (P<0.0001) and both parameters were strongly correlated (r=0.82; P<0.0001). Conclusions Individuals with longer telomeres display a higher number of self-renewing ECFCs. Our results also indicate that leukocyte TL, as a proxy of TL dynamics in ECFCs, could be used as a surrogate marker of endothelial repair capacity in clinical and laboratory practice because of easy accessibility of leukocytes. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02176941.

Keywords: aging; endothelial progenitor cell; telomere.

Conflict of interest statement

None.

Figures

Figure 1. Classification of the subjects according…
Figure 1. Classification of the subjects according to endothelial colony‐forming cells detectability and replating capacity.
ECFCs indicates endothelial colony‐forming cells; and PBMC, peripheral blood mononuclear cells.
Figure 2. Leukocyte telomere length and endothelial…
Figure 2. Leukocyte telomere length and endothelial colony‐forming cells detectabity and replating capacity.
Age‐ and sex‐adjusted leukocyte telomere length values in the 3 groups. Black lines and crossbars represent mean±SD, circles represent individual values, and P is from trend ANOVA. ECFCs indicates endothelial colony‐forming cells; and LTL, leukocyte telomere length.
Figure 3. Endothelial colony‐forming cells‐telomere length and…
Figure 3. Endothelial colony‐forming cells‐telomere length and number of clones.
Number of endothelial colony‐forming cell clones obtained from culture of peripheral blood mononuclear cells according to endothelial colony‐forming cells‐telomere length. R2 and P are from Pearson correlation. ECFCs indicates endothelial colony‐forming cells; ECFC‐TL, endothelial colony‐forming cells telomere length; and PBMC, peripheral blood mononuclear cells.
Figure 4. Endothelial colony‐forming cells‐telomere length and…
Figure 4. Endothelial colony‐forming cells‐telomere length and circulating von Willebrand factor levels.
Relationship between plasmatic levels of von Willebrand factor and ECFC‐TL (n=52). R2 and P are from Pearson correlation. ECFC‐TL indicates endothelial colony‐forming cells‐telomere length; and VWF, von Willebrand factor.
Figure 5. Relationship between endothelial colony‐forming cells‐telomere…
Figure 5. Relationship between endothelial colony‐forming cells‐telomere length (ECFC‐TL), muscle telomere length, and leukocyte telomere length.
A, Mean and individual values of muscle telomere length, ECFC‐TL, and leukocyte telomere length (n=52). Value are expressed as mean±SD (kb) and P are from paired t tests. B, Relationship between ECFC‐TL and leukocyte telomere length. R2 and P are from Pearson correlation. C, Relationship between ECFC‐TL and muscle telomere length. R2 and P are from Pearson correlation. ECFC‐TL indicates endothelial colony‐forming cells‐telomere length; LTL, leukocyte telomere length; and MTL, muscle telomere length.

References

    1. Lacaud G, Kouskoff V. Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis. Exp Hematol. 2017;49:19–24. DOI: 10.1016/j.exphem.2016.12.009.
    1. D’Mello MJJ, Ross SA, Briel M, Anand SS, Gerstein H, Paré G. Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta‐analysis. Circ Cardiovasc Genet. 2015;8:82–90. DOI: 10.1161/CIRCGENETICS.113.000485.
    1. Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta‐analysis. BMJ. 2014;349:g4227. DOI: 10.1136/bmj.g4227.
    1. Madonna R, Novo G, Balistreri CR. Cellular and molecular basis of the imbalance between vascular damage and repair in ageing and age‐related diseases: as biomarkers and targets for new treatments. Mech Ageing Dev. 2016;159:22–30. DOI: 10.1016/j.mad.2016.03.005.
    1. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–660. DOI: 10.1038/nm0603-653.
    1. Balaji S, King A, Crombleholme TM, Keswani SG. The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Adv Wound Care. 2013;2:283–295. DOI: 10.1089/wound.2012.0398.
    1. Hill JM, Zalos G, Halcox JPJ, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348:593–600. DOI: 10.1056/NEJMoa022287.
    1. Kunz GA, Liang G, Cuculi F, Cuculoski F, Gregg D, Vata KC, Shaw LK, Goldschmidt‐Clermont PJ, Dong C, Taylor DA, et al. Circulating endothelial progenitor cells predict coronary artery disease severity. Am Heart J. 2006;152:190–195. DOI: 10.1016/j.ahj.2006.02.001.
    1. Samman Tahhan A, Hammadah M, Raad M, Almwaqqat Z, Alkhoder A, Sandesara PB, Mohamed‐Kelli H, Hayek SS, Kim JH, O’Neal WT, et al. Progenitor cells and clinical outcomes in patients with acute coronary syndromes. Circ Res. 2018;122:1565–1575. DOI: 10.1161/CIRCRESAHA.118.312821.
    1. Schmidt‐Lucke C, Rössig L, Fichtlscherer S, Vasa M, Britten M, Kämper U, Dimmeler S, Zeiher AM. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005;111:2981–2987. DOI: 10.1161/CIRCULATIONAHA.104.504340.
    1. Vemparala K, Roy A, Bahl VK, Prabhakaran D, Nath N, Sinha S, Nandi P, Pandey RM, Reddy KS, Manhapra A, et al. Early accelerated senescence of circulating endothelial progenitor cells in premature coronary artery disease patients in a developing country—a case control study. BMC Cardiovasc Disord. 2013;13:104. DOI: 10.1186/1471-2261-13-104.
    1. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Böhm M, Nickenig G. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353:999–1007. DOI: 10.1056/NEJMoa043814.
    1. Medina RJ, Barber CL, Sabatier F, Dignat‐George F, Melero‐Martin JM, Khosrotehrani K, Ohneda O, Randi AM, Chan JKY, Yamaguchi T, et al. Endothelial progenitors: a consensus statement on nomenclature. Stem Cells Transl Med. 2017;6:1316–1320. DOI: 10.1002/sctm.16-0360.
    1. Chang T‐Y, Tsai W‐C, Huang T‐S, Su S‐H, Chang C‐Y, Ma H‐Y, Wu C‐H, Yang C‐Y, Lin C‐H, Huang P‐H, et al. Dysregulation of endothelial colony‐forming cell function by a negative feedback loop of circulating miR‐146a and ‐146b in cardiovascular disease patients. PLoS One. 2017;12:e0181562. DOI: 10.1371/journal.pone.0181562.
    1. O’Neill CL, McLoughlin KJ, Chambers SEJ, Guduric‐Fuchs J, Stitt AW, Medina RJ. The vasoreparative potential of endothelial colony forming cells: a journey through pre‐clinical studies. Front Med. 2018;5:273. DOI: 10.3389/fmed.2018.00273.
    1. Paschalaki KE, Randi AM. Recent advances in endothelial colony forming cells toward their use in clinical translation. Front Med. 2018;5:295. DOI: 10.3389/fmed.2018.00295.
    1. Psaltis PJ, Simari RD. Vascular wall progenitor cells in health and disease. Circ Res. 2015;116:1392–1412. DOI: 10.1161/CIRCRESAHA.116.305368.
    1. Goligorsky MS, Hirschi K. Stress‐induced premature senescence of endothelial and endothelial progenitor cells. Adv Pharmacol. 2016;77:281–306. DOI: 10.1016/bs.apha.2016.04.007.
    1. Medina RJ, O’Neill CL, O’Doherty TM, Chambers SEJ, Guduric‐Fuchs J, Neisen J, Waugh DJ, Simpson DA, Stitt AW. Ex vivo expansion of human outgrowth endothelial cells leads to IL‐8‐mediated replicative senescence and impaired vasoreparative function. Stem Cells. 2013;31:1657–1668. DOI: 10.1002/stem.1414.
    1. Benetos A, Toupance S, Gautier S, Labat C, Kimura M, Rossi PM, Settembre N, Hubert J, Frimat L, Bertrand B, et al. Short leukocyte telomere length precedes clinical expression of atherosclerosis: the blood‐and‐muscle model. Circ Res. 2018;122:616–623. DOI: 10.1161/CIRCRESAHA.117.311751.
    1. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104:2752–2760. DOI: 10.1182/blood-2004-04-1396.
    1. Smadja DM, Melero‐Martin JM, Eikenboom J, Bowman M, Sabatier F, Randi AM. Standardization of methods to quantify and culture endothelial colony‐forming cells derived from peripheral blood: position paper from the International Society on Thrombosis and Haemostasis SSC. J Thromb Haemost. 2019;17:1190–1194. DOI: 10.1111/jth.14462.
    1. Korff T, Augustin HG. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J Cell Biol. 1998;143:1341–1352. DOI: 10.1083/jcb.143.5.1341.
    1. Kimura M, Stone RC, Hunt SC, Skurnick J, Lu X, Cao X, Harley CB, Aviv A. Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nat Protoc. 2010;5:1596–1607. DOI: 10.1038/nprot.2010.124.
    1. Basile DP, Yoder MC. Circulating and tissue resident endothelial progenitor cells. J Cell Physiol. 2014;229:10–16. DOI: 10.1002/jcp.24423.
    1. Edwards N, Langford‐Smith AWW, Wilkinson FL, Alexander MY. Endothelial progenitor cells: new targets for therapeutics for inflammatory conditions with high cardiovascular risk. Front Med. 2018;5:200. DOI: 10.3389/fmed.2018.00200.
    1. Qiu Y, Zhang C, Zhang G, Tao J. Endothelial progenitor cells in cardiovascular diseases. Aging Med. 2018;1:204–208. DOI: 10.1002/agm2.12041.
    1. Patel J, Wong HY, Wang W, Alexis J, Shafiee A, Stevenson AJ, Gabrielli B, Fisk NM, Khosrotehrani K. Self‐renewal and high proliferative colony forming capacity of late‐outgrowth endothelial progenitors is regulated by cyclin‐dependent kinase inhibitors driven by notch signaling. Stem Cells. 2016;34:902–912. DOI: 10.1002/stem.2262.
    1. Ha G, Ferratge S, Naserian S, Proust R, Ponsen A‐C, Arouche N, Uzan G. Circulating endothelial progenitors in vascular repair. J Cell Immunother. 2018;4:13–17. DOI: 10.1016/j.jocit.2018.09.004.
    1. Allsopp RC, Weissman IL. Replicative senescence of hematopoietic stem cells during serial transplantation: does telomere shortening play a role? Oncogene. 2002;21:3270–3273. DOI: 10.1038/sj.onc.1205314.
    1. Fathi E, Charoudeh HN, Sanaat Z, Farahzadi R. Telomere shortening as a hallmark of stem cell senescence. Stem Cell Investig. 2019;6:7. DOI: 10.21037/sci.2019.02.04.
    1. Hjelmborg JVB, Nzietchueng R, Kimura M, Gardner JP, Bladbjerg EM, Christensen K, Aviv A, Benetos A. Leukocyte telomere length is inversely correlated with plasma Von Willebrand factor. Thromb Res. 2010;125:e339–342. DOI: 10.1016/j.thromres.2010.03.006.
    1. von Känel R, Malan NT, Hamer M, van der Westhuizen FH, Malan L. Leukocyte telomere length and hemostatic factors in a South African cohort: the SABPA Study. J Thromb Haemost. 2014;12:1975–1985. DOI: 10.1111/jth.12733.
    1. Doddapattar P, Dhanesha N, Chorawala MR, Tinsman C, Jain M, Nayak MK, Staber JM, Chauhan AK. Endothelial cell‐derived von Willebrand factor, but not platelet‐derived, promotes atherosclerosis in ApoE‐deficient mice. Arterioscler Thromb Vasc Biol. 2018;38:520–528. DOI: 10.1161/ATVBAHA.117.309918.
    1. Lenting PJ, Christophe OD, Denis CV. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood. 2015;125:2019–2028. DOI: 10.1182/blood-2014-06-528406.
    1. McDonald AI, Shirali AS, Aragón R, Ma F, Hernandez G, Vaughn DA, Mack JJ, Lim TY, Sunshine H, Zhao P, et al. Endothelial regeneration of large vessels is a biphasic process driven by local cells with distinct proliferative capacities. Cell Stem Cell. 2018;23:210–225.e6. DOI: 10.1016/j.stem.2018.07.011.
    1. Toupance S, Labat C, Temmar M, Rossignol P, Kimura M, Aviv A, Benetos A. Short telomeres, but not telomere attrition rates, are Associated With Carotid Atherosclerosis. Hypertension. 2017;70:420–425. DOI: 10.1161/HYPERTENSIONAHA.117.09354.
    1. Banno K, Yoder MC. Tissue regeneration using endothelial colony‐forming cells: promising cells for vascular repair. Pediatr Res. 2018;83:283–290. DOI: 10.1038/pr.2017.231.

Source: PubMed

3
Subscribe