Short Leukocyte Telomere Length Precedes Clinical Expression of Atherosclerosis: The Blood-and-Muscle Model

Athanase Benetos, Simon Toupance, Sylvie Gautier, Carlos Labat, Masayuki Kimura, Pascal M Rossi, Nicla Settembre, Jacques Hubert, Luc Frimat, Baptiste Bertrand, Mourad Boufi, Xavier Flecher, Nicolas Sadoul, Pascal Eschwege, Michèle Kessler, Irene P Tzanetakou, Ilias P Doulamis, Panagiotis Konstantopoulos, Aspasia Tzani, Marilina Korou, Anastasios Gkogkos, Konstantinos Perreas, Evangelos Menenakos, Georgios Samanidis, Michail Vasiloglou-Gkanis, Jeremy D Kark, Serguei Malikov, Simon Verhulst, Abraham Aviv, Athanase Benetos, Simon Toupance, Sylvie Gautier, Carlos Labat, Masayuki Kimura, Pascal M Rossi, Nicla Settembre, Jacques Hubert, Luc Frimat, Baptiste Bertrand, Mourad Boufi, Xavier Flecher, Nicolas Sadoul, Pascal Eschwege, Michèle Kessler, Irene P Tzanetakou, Ilias P Doulamis, Panagiotis Konstantopoulos, Aspasia Tzani, Marilina Korou, Anastasios Gkogkos, Konstantinos Perreas, Evangelos Menenakos, Georgios Samanidis, Michail Vasiloglou-Gkanis, Jeremy D Kark, Serguei Malikov, Simon Verhulst, Abraham Aviv

Abstract

Rationale: Short telomere length (TL) in leukocytes is associated with atherosclerotic cardiovascular disease (ASCVD). It is unknown whether this relationship stems from having inherently short leukocyte TL (LTL) at birth or a faster LTL attrition thereafter. LTL represents TL in the highly proliferative hematopoietic system, whereas TL in skeletal muscle represents a minimally replicative tissue.

Objective: We measured LTL and muscle TL (MTL) in the same individuals with a view to obtain comparative metrics for lifelong LTL attrition and learn about the temporal association of LTL with ASCVD.

Methods and results: Our Discovery Cohort comprised 259 individuals aged 63±14 years (mean±SD), undergoing surgery with (n=131) or without (n=128) clinical manifestation of ASCVD. In all subjects, MTL adjusted for muscle biopsy site (MTLA) was longer than LTL and the LTL-MTLA gap similarly widened with age in ASCVD patients and controls. Age- and sex-adjusted LTL (P=0.005), but not MTLA (P=0.90), was shorter in patients with ASCVD than controls. The TL gap between leukocytes and muscle (LTL-MTLA) was wider (P=0.0003), and the TL ratio between leukocytes and muscle (LTL/MTLA) was smaller (P=0.0001) in ASCVD than in controls. Findings were replicated in a cohort comprising 143 individuals.

Conclusions: This first study to apply the blood-and-muscle TL model shows more pronounced LTL attrition in ASCVD patients than controls. The difference in LTL attrition was not associated with age during adulthood suggesting that increased attrition in early life is more likely to be a major explanation of the shorter LTL in ASCVD patients.

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02176941.

Keywords: aging; atherosclerosis; biopsy; leukocytes; muscle; telomere.

© 2017 The Authors.

Figures

Figure 1.
Figure 1.
Leukocyte telomere length vs telomere length in the Discovery Cohort. Dotted line represents line of identity. LTL indicates leukocyte telomere length; MTL, muscle telomere length; and MTLA, site-adjusted muscle telomere length.
Figure 2.
Figure 2.
Telomere length models vs age in the Discovery Cohort. Difference between leukocyte telomere length (LTL) and site-adjusted muscle telomere length (MTLA) (left); ratio of leukocyte telomere length and site-adjusted muscle telomere length (right). ASCVD indicates atherosclerotic cardiovascular disease.
Figure 3.
Figure 3.
Four telomere length models in subjects of the Discovery Cohort. Values are adjusted for age and sex. ASCVD indicates atherosclerotic cardiovascular disease; LTL, leukocyte telomere length; and MTLA, site-adjusted muscle telomere length.
Figure 4.
Figure 4.
Four telomere length models vs the number of atherosclerotic sites in the Discovery Cohort. 0=Control; 1, one site; ≥2, two or more sites. Values are adjusted for age and sex. ASCVD indicates atherosclerotic cardiovascular disease; LTL, leukocyte telomere length; and MTLA, site-adjusted muscle telomere length.
Figure 5.
Figure 5.
Atherosclerotic cardiovascular disease (ASCVD) prevalence in the sample as a function of telomere length and sex for ages 50 and 80 years. Lines were computed for leukocyte telomere length (LTL) and LTL/site-adjusted muscle telomere length (MTLA) using the coefficients in Table 2. Lines drawn over 95% TL range in the data for the 2 sexes. Note that ages 50 (dashed lines) and 80 (solid lines) were chosen for illustration purpose only; age was entered as continuous variable in the analyses.

References

    1. Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014;349:g4227.
    1. D’Mello MJ, Ross SA, Briel M, Anand SS, Gerstein H, Paré G. Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ Cardiovasc Genet. 2015;8:82–90. doi: 10.1161/CIRCGENETICS.113.000485.
    1. Aviv A. Genetics of leukocyte telomere length and its role in atherosclerosis. Mutat Res. 2012;730:68–74. doi: 10.1016/j.mrfmmm.2011.05.001.
    1. Fyhrquist F, Saijonmaa O, Strandberg T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol. 2013;10:274–283. doi: 10.1038/nrcardio.2013.30.
    1. Codd V, Nelson CP, Albrecht E, et al. CARDIoGRAM; Consortium. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45:422–427, 427e1–2. doi: 10.1038/ng.2528.
    1. Scheller Madrid A, Rode L, Nordestgaard BG, Bojesen SE. Short telomere length and ischemic heart disease: observational and genetic studies in 290 022 individuals. Clin Chem. 2016;62:1140–1149. doi: 10.1373/clinchem.2016.258566.
    1. Haycock PC, Burgess S, Nounu A, et al. Association between telomere length and risk of cancer and non-neoplastic diseases: a Mendelian Randomization Study. JAMA Oncol. 2017;3:636–651.
    1. Daniali L, Benetos A, Susser E, Kark JD, Labat C, Kimura M, Desai K, Granick M, Aviv A. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun. 2013;4:1597. doi: 10.1038/ncomms2602.
    1. Benetos A, Kimura M, Labat C, Buchoff GM, Huber S, Labat L, Lu X, Aviv A. A model of canine leukocyte telomere dynamics. Aging Cell. 2011;10:991–995. doi: 10.1111/j.1474-9726.2011.00744.x.
    1. Youngren K, Jeanclos E, Aviv H, Kimura M, Stock J, Hanna M, Skurnick J, Bardeguez A, Aviv A. Synchrony in telomere length of the human fetus. Hum Genet. 1998;102:640–643.
    1. Kimura M, Gazitt Y, Cao X, Zhao X, Lansdorp PM, Aviv A. Synchrony of telomere length among hematopoietic cells. Exp Hematol. 2010;38:854–859. doi: 10.1016/j.exphem.2010.06.010.
    1. Okuda K, Bardeguez A, Gardner JP, Rodriguez P, Ganesh V, Kimura M, Skurnick J, Awad G, Aviv A. Telomere length in the newborn. Pediatr Res. 2002;52:377–381. doi: 10.1203/00006450-200209000-00012.
    1. Factor-Litvak P, Susser E, Kezios K, McKeague I, Kark JD, Hoffman M, Kimura M, Wapner R, Aviv A. Leukocyte telomere length in newborns: implications for the role of telomeres in human disease. Pediatrics. 2016;137:e20153927.
    1. Benetos A, Kark JD, Susser E, Kimura M, Sinnreich R, Chen W, Steenstrup T, Christensen K, Herbig U, von Bornemann Hjelmborg J, Srinivasan SR, Berenson GS, Labat C, Aviv A. Tracking and fixed ranking of leukocyte telomere length across the adult life course. Aging Cell. 2013;12:615–621. doi: 10.1111/acel.12086.
    1. Aubert G, Baerlocher GM, Vulto I, Poon SS, Lansdorp PM. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet. 2012;8:e1002696. doi: 10.1371/journal.pgen.1002696.
    1. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, Gansevoort RT, Kasiske BL, Eckardt KU. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80:17–28.
    1. Kimura M, Stone RC, Hunt SC, Skurnick J, Lu X, Cao X, Harley CB, Aviv A. Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nat Protoc. 2010;5:1596–1607. doi: 10.1038/nprot.2010.124.
    1. Nakagawa S, Schielzeth H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev Camb Philos Soc. 2010;85:935–956. doi: 10.1111/j.1469-185X.2010.00141.x.
    1. Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York: Springer Science & Business Media; 2003.
    1. Berglund K, Reynolds CA, Ploner A, Gerritsen L, Hovatta I, Pedersen NL, Hägg S. Longitudinal decline of leukocyte telomere length in old age and the association with sex and genetic risk. Aging (Albany NY) 2016;8:1398–1415. doi: 10.18632/aging.100995.
    1. Sabharwal S, Verhulst S, Guirguis G, Kark JD, Labat C, Roche NE, Martimucci K, Patel K, Heller DS, Kimura M, Chuang D, Chuang A, Benetos A, Aviv A. Telomere length dynamics in early life: the blood-and-muscle model. FASEB J. 2018;32:529–534. doi: 10.1096/fj.201700630R.
    1. Toupance S, Labat C, Temmar M, Rossignol P, Kimura M, Aviv A, Benetos A. Short telomeres, but not telomere attrition rates, are associated with carotid atherosclerosis. Hypertension. 2017;70:420–425. doi: 10.1161/HYPERTENSIONAHA.117.09354.
    1. Hjelmborg JB, Dalgård C, Möller S, Steenstrup T, Kimura M, Christensen K, Kyvik KO, Aviv A. The heritability of leucocyte telomere length dynamics. J Med Genet. 2015;52:297–302. doi: 10.1136/jmedgenet-2014-102736.
    1. Slagboom PE, Droog S, Boomsma DI. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1994;55:876–882.

Source: PubMed

3
Subscribe