Grape Polyphenols' Effects in Human Cardiovascular Diseases and Diabetes

Zuriñe Rasines-Perea, Pierre-Louis Teissedre, Zuriñe Rasines-Perea, Pierre-Louis Teissedre

Abstract

The consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals, has increased due to consumers' interest in the relevance of food composition for human health. Considerable recent interest has focused on bioactive phenolic compounds in grape, as they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, anti-ageing and antimicrobial properties. Observational studies indicate that the intake of polyphenol-rich foods improves vascular health, thereby significantly reducing the risk of hypertension, and cardiovascular disease (CVD). Other researchers have described the benefits of a grape polyphenol-rich diet for other types of maladies such as diabetes mellitus. This is a comprehensive review on the consumption of polyphenolic grape compounds, concerning their potential benefits for human health in the treatment of cardiovascular diseases and diabetes.

Keywords: cardiovascular diseases; dietary antioxidant; grape polyphenols; type 2 diabetes.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Polyphenol subgroup hierarchy and structure examples.
Figure 2
Figure 2
Grape polyphenols moderate consumption effects related with a final chronic disease as Cardiovascular disease or diabetes.

References

    1. Willett W.C., Sacks F., Trichopoulou A., Drescher G., Ferro-Luzzi A., Helsing E., Trichopoulos D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995;61:1402S–1406S.
    1. Lindberg M.L., Amsterdam E.A. Alcohol, wine, and cardiovascular health. Clin. Cardiol. 2008;31:347–351. doi: 10.1002/clc.20263.
    1. Friedman L.A., Kimball A.W. Coronary heart disease mortality and alcohol consumption in framingham. Am. J. Epidemiol. 1986;124:481–489.
    1. Muntwyler J., Hennekens C.H., Buring J.E., Gaziano J.M. Mortality and light to moderate alcohol consumption after myocardial infarction. Lancet. 1998;352:1882–1885. doi: 10.1016/S0140-6736(98)06351-X.
    1. Gronbaek M., Deis A., Sorensen T.I., Becker U., Schnohr P., Jensen G. Mortality associated with moderate intakes of wine, beer, or spirits. BMJ. 1995;310:1165–1169. doi: 10.1136/bmj.310.6988.1165.
    1. Renaud S., de Lorgeril M. Wine, alcohol, platelets, and the french paradox for coronary heart disease. Lancet. 1992;339:1523–1526. doi: 10.1016/0140-6736(92)91277-F.
    1. Kuhnau J. The flavonoids. A class of semi-essential food components: Their role in human nutrition. World Rev. Nutr. Diet. 1976;24:117–191.
    1. Hertog M.G., Hollman P.C., Katan M.B., Kromhout D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr. Cancer. 1993;20:21–29. doi: 10.1080/01635589309514267.
    1. Lin J., Rexrode K.M., Hu F., Albert C.M., Chae C.U., Rimm E.B., Stampfer M.J., Manson J.E. Dietary intakes of flavonols and flavones and coronary heart disease in US women. Am. J. Epidemiol. 2007;165:1305–1313. doi: 10.1093/aje/kwm016.
    1. Wu X., Beecher G.R., Holden J.M., Haytowitz D.B., Gebhardt S.E., Prior R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 2006;54:4069–4075. doi: 10.1021/jf060300l.
    1. Manach C., Scalbert A., Morand C., Rémésy C., Jime ´nez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747.
    1. Centers for Disease Control and Prevention . National Diabetes Fact Sheet: National Estimates and General Information on Diabetes and Prediabetes in the United States, 2011. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; Atlanta, GA, USA: 2011.
    1. Wang X., Ouyang Y.Y., Liu J., Zhao G. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. Br. J. Nutr. 2014;111:1–11. doi: 10.1017/S000711451300278X.
    1. Hartley L., Flowers N., Holmes J., Clarke A., Stranges S., Hooper L., Rees K. Green and black tea for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2013;6:CD009934.
    1. Wightman J.D., Heuberger R.A. Effect of grape and other berries on cardiovascular health. J. Sci. Food Agric. 2015;95:1584–1597. doi: 10.1002/jsfa.6890.
    1. Li H., Xia N., Förstermann U. Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide. 2012;26:102–110. doi: 10.1016/j.niox.2011.12.006.
    1. Chobanian A.V., Bakris G.L., Black H.R., Cushman W.C., Green L.A., Izzo J.L., Jr., Jones D.W., Materson B.J., Oparil S., Wright J.T., et al. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42:1206–1252. doi: 10.1161/01.HYP.0000107251.49515.c2.
    1. Papadogiannis D.E., Protogerou A.D. Blood pressure variability: A confounder and a cardiovascular risk factor. Hypertens. Res. 2010;3:162–163. doi: 10.1038/hr.2010.223.
    1. World Health Organization . Global Status Report on Noncommunicable Diseases 2014. WHO Press; Geneva, Switzerland: 2014.
    1. Lindsley C.W. 2013 Trends and Statistics for Prescription Medications in the United States: CNS Highest Ranked and Record Number of Prescriptions Dispensed. ACS Chem. Neurosci. 2015;6:356–357. doi: 10.1021/acschemneuro.5b00049.
    1. Eckel R.H., Jakicic J.M., Ard J.D., de Jesus J.M., Houston Miller N., Hubbard V.S., Lee I.M., Lichtenstein A.H., Loria C.M., Millen B.E., et al. 2013 AHA/ACC Guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S76–S99. doi: 10.1161/01.cir.0000437740.48606.d1.
    1. Wengreen H., Munger R.G., Cutler A., Quach A., Bowles A., Corcoran C., Tschanz J.T., Norton M.C., Welsh-Bohmer K.A. Prospective study of Dietary Approaches to Stop Hypertension- and Mediterranean-style dietary patterns and age-related cognitive change: The Cache County Study on Memory, Health and Aging. Am. J. Clin. Nutr. 2013;98:1263–1271. doi: 10.3945/ajcn.112.051276.
    1. Lewington S., Clarke R., Qizilbash N., Peto R., Collins R. Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–1913.
    1. Park Y.K., Kim J.-S., Kang M.-H. Concord grape juice supplementation reduces blood pressure in Korean hypertensive men: Double-blind, placebo controlled intervention trial. Biofactors. 2004;22:145–147. doi: 10.1002/biof.5520220128.
    1. Dohadwala M.M., Hamburg N.M., Holbrook M., Kim B.H., Duess M.-A., Levit A., Titas M., Chung W.B., Vincent F.B., Caiano T.L., et al. Effect of grape juice on ambulatory blood pressure in pre-hypertension and Stage 1 hypertension. Am. J. Clin. Nutr. 2010;92:1052–1059. doi: 10.3945/ajcn.2010.29905.
    1. Ras R.T., Zock P.L., Zebregs Y.E., Johnston N.R., Webb D.J., Draijer R. Effect of polyphenol-rich grape seed extract on ambulatory blood pressure in subjects with pre- and stage I hypertension. Br. J. Nutr. 2013;110:2234–2241. doi: 10.1017/S000711451300161X.
    1. Sivaprakasapillai B., Edirisinghe I., Randolph J., Steinberg F., Kappagoda T. Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metabolism. 2009;58:1743–1746. doi: 10.1016/j.metabol.2009.05.030.
    1. Clifton P.M. Effect of grape seed extract and quercetin on cardiovascular and endothelial parameters in high-risk subjects. J. Biomed. Biotechnol. 2004;5:272–278. doi: 10.1155/S1110724304403088.
    1. Sano A., Uchida R., Saito M., Shioya N., Komori Y., Tho Y., Hashizume N. Beneficial effects of grape seed extract on malondialdehyde-modified LDL. J. Nutr. Sci. Vitaminol. 2007;53:174–182. doi: 10.3177/jnsv.53.174.
    1. Van Mierlo L.A.J., Zock P.L., van der Knaap H.C.M., Draijer R. Grape polyphenols do not affect vascular function in healthy men. J. Nutr. 2010;140:1769–1773. doi: 10.3945/jn.110.125518.
    1. Ward N.C., Hodgson J.M., Croft K.D., Burke V., Beilin L.J., Puddey I.B. The combination of vitamin C and grape-seed polyphenols increases blood pressure: A randomized, double-blind, placebo-controlled trial. J. Hypertens. 2005;23:427–434. doi: 10.1097/00004872-200502000-00026.
    1. Barona J., Aristizabal J.C., Blesso C.N., Volek J.S., Fernandez M.L. Grape polyphenols reduce blood pressure and increase flow-mediated vasodilation in men with metabolic syndrome. J. Nutr. 2012;142:1626–1632. doi: 10.3945/jn.112.162743.
    1. Erlund I., Koli R., Alfthan G., Marniemi J., Puukka P., Mustonen P., Mattila P., Jula A. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am. J. Clin. Nutr. 2008;87:323–331.
    1. Feringa H.H., Laskey D.A., Dickson J.E., Coleman C.I. The effect of grape seed extract on cardiovascular risk markers: A meta-analysis of randomized controlled trials. J. Am. Diet. Assoc. 2011;111:1173–1181. doi: 10.1016/j.jada.2011.05.015.
    1. Draijer R., de Graaf Y., Slettenaar M., de Groot E., Wright C.I. Consumption of a polyphenol-rich grape-wine extract lowers ambulatory blood pressure in mildly hypertensive subjects. Nutrients. 2015;7:3138–3153. doi: 10.3390/nu7053138.
    1. Vaisman N., Niv E. Daily consumption of red grape cell powder in a dietary dose improves cardiovascular parameters: A double blind, placebo-controlled, randomized study. Int. J. Food Sci. Nutr. 2015;66:342–349. doi: 10.3109/09637486.2014.1000840.
    1. Biesinger S., Michaels H.A., Quadros A.S., Qian Y., Rabovsky A.B., Badgerand R.S., Jalili T. A combination of isolated phytochemicals and botanical extractlowers diastolic blood pressure in a randomized controlled trial of hypertensivsubjects. Eur. J. Clin. Nutr. 2016;70:10–16. doi: 10.1038/ejcn.2015.88.
    1. Delles C., Dymott J.A., Neisius U., Rocchiccioli J.P., Bryce G.J., Moreno M.U., Carty D.M., Berg G.A., Hamilton C.A., Dominiczak A.F. Reduced LDL-cholesterol levels in patients with coronary artery disease are paralleled by improved endothelial function: An observational study in patients from 2003 and 2007. Atherosclerosis. 2010;211:271–277. doi: 10.1016/j.atherosclerosis.2010.01.014.
    1. Brown B.G., Stukovsky K.H., Zhao X.Q. Simultaneous low-density lipoprotein-C lowering and high-density lipoprotein-C elevation for optimum cardiovascular disease prevention with various drug classes, and their combinations: A meta-analysis of 23 randomized lipid trials. Curr. Opin. Lipidol. 2006;17:631–636. doi: 10.1097/MOL.0b013e32800ff750.
    1. NACB LMPGCommittee Members. Myers G.L., Christenson R.H.M., Cushman M., Ballantyne C.M., Cooper G.R., Pteiffer C.M., Grundy S.M., Labarthe D.R., Levy D., et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: Emerging biomarkers for primary prevention of cardiovascular disease. Clin. Chem. 2009;55:378–384. doi: 10.1373/clinchem.2008.115899.
    1. Zern T.L., Fernandez M.L. Cardioprotective effects of dietary polyphenols. J. Nutr. 2005;135:2291–2294.
    1. Castilla P., Echarri R., Davalos A., Cerrato F., Ortega H., Teruel J.L., Fernández-Lucas M., Gómez-Coronado D., Ortuño J., Lasunción M.A. Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am. J. Clin. Nutr. 2006;84:252–262.
    1. Castilla P., Davalos A., Teruel J.L., Cerrato F., Fernandez-Lucas M., Merino J.L., Sánchez-Martín C.C., Ortuño J., Lasunción M.A. Comparative effects of dietary supplementation with red grape juice and vitamin E on production of superoxide by circulating neutrophil NADPH oxidase in hemodialysis patients. Am. J. Clin. Nutr. 2008;87:1053–1061.
    1. Khadem-Ansari M.H., Rasmi Y., Ramezani F. Effects of red grape juice consumption on high density lipoprotein-cholesterol, apolipoprotein AI, apolipoprotein B and homocysteine in healthy human volunteers. Open Biochem. J. 2010;4:96–99. doi: 10.2174/1874091X01004010096.
    1. Albers A.R., Varghese S., Vitseva O., Vita J.A., Freedman J.E. The antiinflammatory effects of purple grape juice consumption in subjects with stable coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2004;24:e179–e180. doi: 10.1161/.
    1. Stein J.H., Keevil J.G., Wiebe D.A., Aeschlimann S., Folts J.D. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation. 1999;100:1050–1055. doi: 10.1161/01.CIR.100.10.1050.
    1. O’Byrne D.J., Devaraj S., Grundy S.M., Jialal I. Comparison of the antioxidant effects of Concord grape juice flavonoids and α-tocopherol on markers of oxidative stress in healthy adults. Am. J. Clin. Nutr. 2002;76:1367–1374.
    1. Evans M., Wilson D., Guthrie N. A randomized, double-blind, placebo-controlled, pilot study to evaluate the effect of whole grape extract on antioxidant status and lipid profile. J. Funct. Foods. 2014;7:680–691. doi: 10.1016/j.jff.2013.12.017.
    1. Razavi S.M., Gholamin S., Eskandari A., Mohsenian N., Ghorbanihaghjo A., Delazar A., Rashtchizadeh N., Keshtkar-Jahromi M., Argani H. Red grape seed extract improves lipid profiles and decreases oxidized low-density lipoprotein in patients with mild hyperlipidemia. J. Med. Food. 2013;16:255–258. doi: 10.1089/jmf.2012.2408.
    1. Vinson J.A., Proch J., Bose P. MegaNatural® gold grapeseed extract: In vitro antioxidant and in vivo human supplementation studies. J. Med. Food. 2001;4:17–26. doi: 10.1089/10966200152053677.
    1. Van der Made S.M., Plat J., Mensink R.P. Resveratrol does not influence metabolic risk markers related to cardiovascular health in overweight and slightly obese subjects: A randomized, placebo-controlled crossover trial. PLoS ONE. 2015;10:e0118393. doi: 10.1371/journal.pone.0118393.
    1. Magyar K., Halmosi R., Palfi A., Feher G., Czopf L., Fulop A., Battyany I., Sumegi B., Toth K., Szabados E. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin. Hemorheol. Microcirc. 2012;50:179–187.
    1. Teissedre P.L., Frankel E.N., Waterhouse A.L., Peleg H., German J.B. Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grapes and wines. J. Sci. Food Agric. 1996;70:55–61. doi: 10.1002/(SICI)1097-0010(199601)70:1<55::AID-JSFA471>;2-X.
    1. Teissedre P.L., Waterhouse A.L., Frankel E.N. Principal phytochemicals in French syrah and grenache Rhône wines and their antioxidant activity in inhibiting oxidation of human low density lipoproteins. J. Int. Sci. Vigne Vin. 1995;29:205–212. doi: 10.20870/oeno-one.1995.29.4.1122.
    1. Frankel E.N., Waterhouse A.L., Teissedre P.L. Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J. Agric. Food Chem. 1995;43:890–894. doi: 10.1021/jf00052a008.
    1. Miyagi Y., Miwa K., Inoue H. Inhibition of human low-density lipoprotein oxidation by flavonoids in red wine and grape juice. Am. J. Cardiol. 1997;80:1627–1631. doi: 10.1016/S0002-9149(97)00755-8.
    1. Frankel E.N., Bosanek C.A., Meyer A.S., Silliman K., Kirk L.L. Commercial grape juices inhibit the in vitro oxidation of human low-density lipoproteins. J. Agric. Food Chem. 1998;46:834–838. doi: 10.1021/jf9707952.
    1. Fuhrman B., Volkova N., Suraski A., Aviram M. White wine with red wine-like properties: Increased extraction of grape skin polyphenols improves the antioxidant capacity of the derived white wine. J. Agric. Food Chem. 2001;49:3164–3168. doi: 10.1021/jf001378j.
    1. Toaldo I.M., Cruz F.A., de Alves T.L., de Gois J.S., Borges D.L., Cunha H.P., da Silva E.L., Bordignon-Luiz M.T. Bioactive potential of Vitis labrusca L. grape juices from the Southern Region of Brazil: Phenolic and elemental composition and effect on lipid peroxidation in healthy subjects. Food Chem. 2015;173:527–535. doi: 10.1016/j.foodchem.2014.09.171.
    1. Vigna G.B., Costantini F., Aldini G., Carini M., Catapano A., Schena F., Tangerini A., Zanca R., Bombardelli E., Morazzoni P., et al. Effect of a standardized grape seed extract on low-density lipoprotein susceptibility to oxidation in heavy smokers. Metabolism. 2003;52:1250–1257. doi: 10.1016/S0026-0495(03)00192-6.
    1. Tomé-Carneiro J., Conzálvez M., Larrosa M., García-Almagro F.J., Avilés-Plaza F., Parra S., Yáñez-Gascón M.J., Ruiz-Ros J.A., García-Conesa M.T., Tomás-Barberán F.A., et al. Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: A triple-blind, 6-month follow-up, placebo-controlled, randomized trial. Mol. Nutr. Food Res. 2012;56:810–821. doi: 10.1002/mnfr.201100673.
    1. Cathcart M.K. Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: Contributions to atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2004;24:23–28. doi: 10.1161/01.ATV.0000097769.47306.12.
    1. Freedman J.E., Parker C., III, Li L., Perlman J.A., Frei B., Ivanov V., Deak L.R., Iafrati M.D., Folts J.D. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation. 2001;103:2792–2798. doi: 10.1161/01.CIR.103.23.2792.
    1. Morrow J.D. Quantification of Isoprostanes as Indices of Oxidant Stress and the Risk of Atherosclerosis in Humans. Arterioscler. Thromb. Vasc. Biol. 2005;25:279–286. doi: 10.1161/01.ATV.0000152605.64964.c0.
    1. Caccetta R.A., Burke V., Mori T.A., Beilen L.J., Puddey I.B., Croft K.D. Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Radic. Biol. Med. 2001;30:636–642. doi: 10.1016/S0891-5849(00)00497-4.
    1. Zern T.L., Wood R.J., Greene C., West K.L., Liu Y., Aggarwal D., Shachter N.S., Fernandez M.L. Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J. Nutr. 2005;135:1911–1917.
    1. Hokayem M., Blond E., Vidal H., Lambert K., Meugnier E., Feillet-Coudray C., Coudray C., Pesenti S., Luyton C., Lambert-Porcheron S., et al. Grape polyphenols prevent induced oxidative stress and insulin resistance in first-degree relatives of type 2 diabetic patients. Diabetes Care. 2013;36:1454–1461. doi: 10.2337/dc12-1652.
    1. Park Y.K., Lee S.H., Park E., Kim J.S., Kang M.H. Changes in antioxidant status, blood pressure, and lymphocyte DNA damage from grape juice supplementation. Ann. N. Y. Acad. Sci. 2009;1171:385–390. doi: 10.1111/j.1749-6632.2009.04907.x.
    1. Corredor Z., Rodríguez-Ribera L., Coll E., Montañés R., Diaz J.M., Ballarin J., Marcos R., Pastor S. Unfermented grape juice reduce genomic damage on patienundergoing hemodialysis. Food Chem. Toxicol. 2016;92:1–7. doi: 10.1016/j.fct.2016.03.016.
    1. Pace-Asciak C.R., Rounova O., Hahn S.E., Diamandis E.P., Goldberg D.M. Wines and grape juices as modulators of platelet aggregation in healthy human subjects. Clin. Chim. Acta. 1996;246:163–182. doi: 10.1016/0009-8981(96)06236-5.
    1. Watkins T.R., Bierenbaum M.L. Grape juice attenuates cardiovascular risk factors in the hyperlipemic subject. Pharm. Biol. 1998;36:75–80. doi: 10.1076/phbi.36.6.75.4559.
    1. Keevil J.G., Osman H.E., Reed J.D., Folts J.D. Grape Juice, But Not Orange Juice or Grapefruit Juice, Inhibits Human Platelet Aggregation. J. Nutr. 2000;130:53–56.
    1. Benjamin E.J., Levy D., Vaziri S.M., D’Agostino R.B., Belanger A.J., Wolf P.A. Independent risk factors for atrial fibrillation in a populationbased cohort. The Framingham Heart Study. JAMA. 1994;271:840–844. doi: 10.1001/jama.1994.03510350050036.
    1. Cannon C.P. An overview of stroke and the impact of atrial fibrillation. Am. J. Manag. Care. 2010;16:S273–S277.
    1. Lip G.Y. Stroke in atrial fibrillation: Epidemiology and thromboprophylaxis. J. Thromb. Haemost. 2011;9(Suppl. 1):344–351. doi: 10.1111/j.1538-7836.2011.04302.x.
    1. Nattel S., Harada M. Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives. J. Am. Coll. Cardiol. 2014;63:2335–2345. doi: 10.1016/j.jacc.2014.02.555.
    1. Maisel W.H., Stevenson L.W. Atrial fibrillation in heart failure: Epidemiology, pathophysiology, and rationale for therapy. Am. J. Cardiol. 2003;91(Suppl. 1):2D–8D. doi: 10.1016/S0002-9149(02)03373-8.
    1. Larned J.M., Raja Laskar S. Atrial fibrillation and heart failure. Congesrt. Heart Fail. 2009;15:24–30. doi: 10.1111/j.1751-7133.2008.00041.x.
    1. Braunwald E. Shattuck lecture—Cardiovascular medicine at the turn of the millennium: Triumphs, concerns, and opportunities. N. Engl. J. Med. 1997;337:1360–1369. doi: 10.1056/NEJM199711063371906.
    1. Benjamin E.J., Wolf P.A., D’Agostino R.B., Silbershatz H., Kannel W.B., Levy D. Impact of atrial fibrillation on the risk of death: The Framingham Heart Study. Circulation. 1998;98:946–952. doi: 10.1161/01.CIR.98.10.946.
    1. Nattel S., Maguy A., LeBouter S., Yeh Y.H. Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiol. Rev. 2007;87:425–456. doi: 10.1152/physrev.00014.2006.
    1. Nerheim P., Birger-Botkin S., Piracha L., Olshansky B. Heart failure and sudden death in patients with tachycardia-induced cardiomyopathy and recurrent tachycardia. Circulation. 2004;110:247–252. doi: 10.1161/.
    1. Van Wagoner D.R. Electrophysiological remodeling in human atrial fibrillation. Pacing Clin. Electrophysiol. 2003;26:1572–1575. doi: 10.1046/j.1460-9592.2003.t01-1-00234.x.
    1. Ravens U., Poulet C., Wettwer E., Knaut M. Atrial selectivity of antiarrhythmic drugs. J. Physiol. 2013;591:4087–4097. doi: 10.1113/jphysiol.2013.256115.
    1. Ehrlich J.R., Nattel S. Novel approaches for pharmacological management of atrial fibrillation. Drugs. 2009;69:757–774. doi: 10.2165/00003495-200969070-00001.
    1. Li D., Sun H., Levesque P. Antiarrhythmic drug therapy for atrial fibrillation: Focus on atrial selectivity and safety. Cardiovasc. Hematol. Agents Med. Chem. 2009;7:64–75. doi: 10.2174/187152509787047621.
    1. Negi S., Sovari A.A., Dudley S.C., Jr. Atrial fibrillation: The emerging role of inflammation and oxidative stress. Cardiovasc. Hematol. Disord. Drug Targets. 2010;10:262–268. doi: 10.2174/187152910793743850.
    1. Lin C.C., Lin J.L., Lin C.S., Tsai M.C., Su M.J., Lai L.P., Huang S.K. Activation of the calcineurin-nuclear factor of activated T-cell signal transduction pathway in atrial fibrillation. Chest. 2004;126:1926–1932. doi: 10.1016/S0012-3692(15)31443-4.
    1. Doshi D., Morrow J.P. Potential application of late sodium current blockade in the treatment of heart failure and atrial fibrillation. Rev. Cardiovasc. Med. 2009;10(Suppl. 1):S46–S52.
    1. Baczkó I., Light P.E. Resveratrol and derivatives for the treatment of atrial fibrillation. Ann. N. Y. Acad. Sci. 2015;1348:68–74. doi: 10.1111/nyas.12843.
    1. Wild S., Roglic G., Green A., Sicree R., King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–1053. doi: 10.2337/diacare.27.5.1047.
    1. International Diabetes Federation . IDF Diabetes Atlas. 6th ed. International Diabetes Federation; Brussels, Belgium: 2013. pp. 11–17.
    1. Roglic G. WHO Global report on diabetes: A summary. Int. J. Non-Commun. Dis. 2016;1:3–8. doi: 10.4103/2468-8827.184853.
    1. Thomas T., Pfeiffer A.F.H. Foods for the prevention of diabetes: How do they work? Diabetes Metab. Res. Rev. 2012;28:25–49. doi: 10.1002/dmrr.1229.
    1. Stefek M. Natural flavonoids as potential multifunctional agents in prevention of diabetic cataract. Interdiscip. Toxicol. 2011;4:6977. doi: 10.2478/v10102-011-0013-y.
    1. Banihani S., Swedan S., Alguraan Z. Pomegranate and type 2 diabetes. Nutr. Res. 2013;33:341–348. doi: 10.1016/j.nutres.2013.03.003.
    1. Dembinska-Kiec A., Mykkanen O., Kiec-Wilk B., Mykkanen H. Antioxidant phytochemicals against type 2 diabetes. Br. J. Nutr. 2008;99:ES109–ES117. doi: 10.1017/S000711450896579X.
    1. Xiao J.B., Högger P. Influence of diabetes on the pharmacokinetic behavior of natural polyphenols. Curr. Drug Metab. 2014;15:23–29. doi: 10.2174/1389200214666131210142614.
    1. Xiao J.B., Högger P. Dietary Polyphenols and Type 2 Diabetes: Current Insights and Future Perspectives. Curr. Med. Chem. 2015;22:23–38. doi: 10.2174/0929867321666140706130807.
    1. Umeno A., Horie M., Murotomi K., Nakajima Y., Yoshida Y. Antioxidative and Antidiabetic Effects of Natural Polyphenols and Isoflavones. Molecules. 2016;21:708–723. doi: 10.3390/molecules21060708.
    1. Chang C., Kangath A., Burton-Freeman B., Jackson L.S., Edirisinghe I. Polyphenol-rich fruits attenuate impaired endothelial function induced by glucose and free fatty acids in vitro in human endothelial cells. Int. J. Food Sci. Nutr. Diet. 2014;3:99–108.
    1. Aguirre L., Arias N., Macarulla M.T., Gracia A., Portillo M.P. Beneficial effects of quercetin on obesity and diabetes. Open Nutraceut. J. 2011;4:189–198.
    1. Cao H., Xie Y.X., Chen X.Q. Type 2 diabetes diminishes the benefits of dietary antioxidants: Evidence from the different free radical scavenging potential. Food Chem. 2015;186:106–112. doi: 10.1016/j.foodchem.2014.06.027.
    1. Al-Awwadi N., Azay J., Poucheret P., Cassanas G., Krosniak M., Auger C., Gasc F., Rouanet J.M., Cros G., Teissedre P.L. Antidiabetic activity of red wine polyphenolic extract, ethanol, or both in streptozotocin-treated rats. J. Agric. Food Chem. 2004;52:1008–1016. doi: 10.1021/jf030417z.
    1. Al-Awwadi N.A., Bornet A., Azay J., Araiz C., Delbosc S., Cristol J.P., Linck N., Cros G., Teissedre P.L. Red wine polyphenols alone or in association with ethanol prevent hypertension, cardiac hypertrophy, and production of reactive oxygen species in the insulin-resistant fructose-fed rat. J. Agric. Food Chem. 2004;52:5593–5607. doi: 10.1021/jf049295g.
    1. Pinent M., Blay M., Bladé M.C., Salvado M.J., Arola L., Ardévol A. Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology. 2004;145:4985–4990. doi: 10.1210/en.2004-0764.
    1. El-Alfy A.T., Ahmed A.A.E., Fatani A.J. Protective effect of red grape seeds proanthocyanidins against induction of diabetes by alloxan in rats. Pharmacol. Res. 2005;52:264–270. doi: 10.1016/j.phrs.2005.04.003.
    1. Tian X., Liu Y., Ren G., Yin L., Liang X., Geng T., Dang H., An R. Resveratrol limits diabetes-associated cognitive decline in rats by preventing oxidative stress and inflammation and modulating hippocampal structural synaptic plasticity. Brain Res. 2016;1650:1–9. doi: 10.1016/j.brainres.2016.08.032.
    1. Kim Y., Keogh J.B., Clifton P.M. Polyphenols and Glycemic Control. Nutrientes. 2016;8:17–44. doi: 10.3390/nu8010017.
    1. Zunino S.J. Type 2 Diabetes and Glycemic Response to Grapes or Grape Products. J. Nutr. 2009;139:1794S–1800S. doi: 10.3945/jn.109.107631.
    1. Guilford J.M., Pezzuto J.M. Wine and health: A review. Am. J. Enol. Vitic. 2011;62:471–486. doi: 10.5344/ajev.2011.11013.
    1. Wedick N.M., Pan A., Cassidy A., Rimm E.B., Sampson L., Rosner B., Willett W., Hu F.B., Sun Q., van Dam R.M. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am. J. Clin. Nutr. 2012;95:925–933. doi: 10.3945/ajcn.111.028894.
    1. Liu Y.J., Zhan J., Liu X.L., Wang Y., Ji I., He Q.Q. Dietary flavonoids intake and risk of type 2 diabetes: A meta-analysis of prospective cohort studies. Clin. Nutr. 2014;33:59–63. doi: 10.1016/j.clnu.2013.03.011.
    1. Van Dam R.M., Naidoo N., Landberg R. Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: Review of recent findings. Curr. Opin. Lipidol. 2013;24:25–33. doi: 10.1097/MOL.0b013e32835bcdff.
    1. Anhê F.F., Desjardins Y., Pilon G., Dudonné S., Genovese M.I., Lajolo F.M., Marette A. Polyphenols and type 2 diabetes: A prospective review. PharmaNutrition. 2013;1:105–114. doi: 10.1016/j.phanu.2013.07.004.
    1. Cardona F., Andres-Lacueva C., Tulipani S., Tinahones F.J., Queipo-Ortuno M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013;24:1415–1422. doi: 10.1016/j.jnutbio.2013.05.001.
    1. Cani P.D., Possemiers S., van de Wiele T., Guiot Y., Everard A., Rottier O., Geurts L., Naslain D., Neyrinck A., Lambert D.M. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–1103. doi: 10.1136/gut.2008.165886.
    1. Cani P.D., Neyrinck A.M., Fava F., Knauf C., Burcelin R.G., Tuohy K.M., Gibson G., Delzenne N.M. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50:2374–2383. doi: 10.1007/s00125-007-0791-0.
    1. Yamakoshi J., Tokutake S., Kikuchi M., Kubota Y., Konishi H., Mitsuoka T. Effect of proanthocyanidin-rich extract from grape seeds on human fecal flora and fecal odor. Microb. Ecol. Health Dis. 2001;13:25–31. doi: 10.3402/mehd.v13i1.7996.
    1. Queipo-Ortuno M.I., Boto-Ordonez M., Murri M., Gomez-Zumaquero J.M., Clemente-Postigo M., Estruch R., Cardona Diaz F., Andres-Lacueva C., Tinahones F.J. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am. J. Clin. Nutr. 2012;95:1323–1334. doi: 10.3945/ajcn.111.027847.
    1. Kar P., Laight D., Rooprai H.K., Shaw K.M., Cummings M. Effects of grape seed extract in type 2 diabetic subjects at high cardiovascular risk: A double blind randomized placebo controlled trial examining metabolic markers, vascular tone, inflammation, oxidative stress and insulin sensitivity. Diabet. Med. 2009;26:526–531. doi: 10.1111/j.1464-5491.2009.02727.x.
    1. Urquiaga I., D’Acuna S., Perez D., Dicenta S., Echeverria G., Rigotti A., Leighton F. Wine grape pomace flour improves blood pressure, fasting glucose and protein damage in humans: A randomized controlled trial. Biol. Res. 2015;48:49. doi: 10.1186/s40659-015-0040-9.
    1. Banini A.E., Boyd L.C., Allen J.C., Allen H.G., Sauls D.L. Muscadine grape products intake, diet and blood constituents of non-diabetic and type 2 diabetic subjects. Nutrition. 2006;22:1137–1145. doi: 10.1016/j.nut.2006.08.012.
    1. Chiva-Blanch G., Urpi-Sarda M., Ros E., Valderas-Martinez P., Casas R., Arranz S., Guillen M., Lamuela-Raventos R.M., Llorach R., Andres-Lacueva C., et al. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: A randomized clinical trial. Clin. Nutr. 2013;32:200–206. doi: 10.1016/j.clnu.2012.08.022.
    1. Bhatt J.K., Thomas S., Nanjan M.J. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr. Res. 2012;32:537–541. doi: 10.1016/j.nutres.2012.06.003.

Source: PubMed

3
Subscribe