Influence of Hypoxic and Hyperoxic Preconditioning on Endothelial Function in a Model of Myocardial Ischemia-Reperfusion Injury with Cardiopulmonary Bypass (Experimental Study)

Irina A Mandel, Yuri K Podoksenov, Irina V Suhodolo, Darya A An, Sergey L Mikheev, Andrey Yu Podoksenov, Yulia S Svirko, Anna M Gusakova, Vladimir M Shipulin, Andrey G Yavorovskiy, Irina A Mandel, Yuri K Podoksenov, Irina V Suhodolo, Darya A An, Sergey L Mikheev, Andrey Yu Podoksenov, Yulia S Svirko, Anna M Gusakova, Vladimir M Shipulin, Andrey G Yavorovskiy

Abstract

The aim of the experiment was to evaluate the effect of preconditioning based on changes in inspiratory oxygen fraction on endothelial function in the model of ischemia-reperfusion injury of the myocardium in the condition of cardiopulmonary bypass. The prospective randomized study included 32 rabbits divided into four groups: hypoxic preconditioning, hyperoxic preconditioning, hypoxic-hyperoxic preconditioning, and control group. All animals were anesthetized and mechanically ventilated. We provided preconditioning, then started cardiopulmonary bypass, followed by induced acute myocardial infarction (ischemia 45 min, reperfusion 120 min). We investigated endothelin-1, nitric oxide metabolites, asymmetric dimethylarginine during cardiopulmonary bypass: before ischemia, after ischemia, and after reperfusion. We performed light microscopy of myocardium, kidney, lungs, and gut mucosa. The endothelin-1 level was much higher in the control group than in all preconditioning groups after ischemia. The endothelin-1 even further increased after reperfusion. The total concentration of nitric oxide metabolites was significantly higher after all types of preconditioning compared with the control group. The light microscopy of the myocardium and other organs revealed a diminished damage extent in the hypoxic-hyperoxic preconditioning group as compared to the control group. Hypoxic-hyperoxic preconditioning helps to maintain the balance of nitric oxide metabolites, reduces endothelin-1 hyperproduction, and enforces organ protection.

Keywords: cardiopulmonary bypass; endothelial dysfunction; endothelin-1; experiment; hyperoxic preconditioning; hypoxic preconditioning; ischemia-reperfusion injury; nitric oxide.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Dynamics of endothelin-1 (ET-1) concentration in blood plasma in animals during the experiment with different types of preconditioning, fmol/mL (n = 32, n = 8 rabbits/group). HypP—hypoxic preconditioning; HyperP—hyperoxic preconditioning; HHP—hypoxic-hyperoxic preconditioning; control (without preconditioning). Data are expressed as median and quartiles [25; 75]; the circle number 5 is missed value; * p = 0.006 HHP vs control group; #p = 0.003 HHP vs control group; the Mann-Witney test.
Figure 2
Figure 2
The total concentration of nitric oxide metabolites (NOx.total) during the experiment with different types of preconditioning, µmol/L (n = 32, n = 8 rabbits/group). The total concentration of nitric oxide metabolites before the ischemia but after different types of preconditioning was higher than that in control group, as well as after 45 min of ischemia and 120 min of reperfusion; the circles number 7 and 10, and asterisk number 7 are missed values; p was pointed on between the HHP and control groups analysis at the study stages; the Mann-Witney test.
Figure 3
Figure 3
Light microscopy of the myocardium of the left ventricle revealed disturbances of myocardial structure, increase in the distance between the discs, and a lack of cross-striations in the hibernation area. We observed less intense damage in HHP animals compared with the control group. Area at risk (AR) HHP group: slight dystrophy of cardiomyocytes, obvious cross-striation (), preserved myofibrils; only a few pyknotic nuclei (); Ischemic area (IA) HHP group: hyperaemia, interstitial edema (), perinuclear vacuolization (), enlarged capillaries ();AR Control group: severe dystrophy () of cardiomyocytes, loss of cross-striation (), partial degradation of myofibrils; massive cariopicnose (); IA Control group: hyperaemia, interstitial edema (), perinuclear vacuolization (), partial degradation of myofibrils, enlarged capillaries (), local haemorrhages; AR HyperP group: dystrophy of cardiomyocytes, preserved cross-striation and myofibrils (); a few pyknotic nuclei (), enlarged capillaries (); IA HyperP group: hyperaemia, interstitial edema (), perinuclear vacuolization (), enlarged capillaries (), dystrophy () of cardiomyocytes; AR HypP group: dystrophy of cardiomyocytes (), loss of cross-striation (), partial degradation of myofibrils; cariopicnose (), interstitial edema (); IA HypP group: hyperaemia, interstitial edema (), partial degradation of myofibrils, enlarged capillaries (), loss of cross-striation (), local haemorrhages; 200×, H&E.
Figure 4
Figure 4
Light microscopy of the kidneys, they were less affected in the HHP group then in the control group. HHP group (A): a moderate edema (), the capsule of the glomerulus () is moderately expanded, 200×, H&E; Control group (B): marked edema (), enlarged capillaries () of cortical and medullar substances, the capsule of the glomerulus () is moderately expanded, 200×, H&E; HyperP group (C): the nuclei of the podocytes are normal, the capsule of the glomerulus () is moderately expanded, a moderate amount of red blood cells in the capillaries. 400×, H&E; HypP group (D): enlarged capillaries () of cortical substance, edema (), destructive changes in cells. 400×, H&E.
Figure 5
Figure 5
Light microscopy of the gut mucosa. HHP group (A): a large number of intraepithelial lymphocytes (), 670x, H&E; Control group (B): a large number of intraepithelial lymphocytes (), 400×, H&E; HyperP group (C): intestinal villus edema (), 400×, H&E; HypP group (D): intestinal villi edema (), a large number of intraepithelial lymphocytes (), 400×, H&E.
Figure 6
Figure 6
Light microscopy of the lung parenchyma. HHP group (A): moderate hyperemia () of the interalveolar capillaries, 400×, H&E; Control group (B): enlarged capillaries (), filled with erythrocytes, 400×, H&E; HyperP group (C): moderate hyperemia () of the interalveolar capillaries, 400×, H&E; HypP group (D): edema () of the interalveolar septa, dystrophy of alveoles, atelectasis (), 400×, H&E.
Figure 7
Figure 7
Infarct size was reduced significantly in all preconditioning groups compared with the control group. HypP—hypoxic preconditioning; HyperP—hyperoxic preconditioning; HHP—hypoxic-hyperoxic preconditioning; control (without preconditioning). The ischemic area to area at risk ratio (IA/RA) decreased by 23% in the HypP group, by 26% in the HyperP group, by 32% in the HHP group vs control group (p = 0.009).
Figure 8
Figure 8
A randomized controlled experimental study of rabbits (n = 32) receiving different types of preconditioning: hypoxic preconditioning (HypP), hyperoxic preconditioning (HyperP), hypoxic-hyperoxic preconditioning (HHP), and control (Ischemia-Reperfusion Injury without preconditioning). Subsequently, acute myocardial infarction and reperfusion were performed for 45 min and 120 min, respectively, after CPB initiation. The hyperoxic and hypoxic-hyperoxic preconditioning maintain the endothelial function, balance of nitric oxide metabolites and reduction of endothelin-1 hyperproduction.

References

    1. Deng Q.W., Xia Z.Q., Qiu Y.X., Wu Y., Liu J.X., Li C., Liu K.X. Clinical benefits of aortic cross-clamping versus limb remote ischemic preconditioning in coronary artery bypass grafting with cardiopulmonary bypass: A meta-analysis of randomized controlled trials. J. Surg. Res. 2015;193:52–68. doi: 10.1016/j.jss.2014.10.007.
    1. Mebazaa A., Pitsis A.A., Rudiger A., Toller W., Longrois D., Ricksten S.E., Bobek I., De Hert S., Wieselthaler G., Schirmer U., et al. Clinical review: Practical recommendations on the management of perioperative heart failure in cardiac surgery. Crit. Care. 2010;14:201. doi: 10.1186/cc8153.
    1. Fedoruk L.M., Kron I.L. An unusual case of cardiac dysfunction after left ventricular reconstruction. J. Cardiothorac. Surg. 2006;1:28. doi: 10.1186/1749-8090-1-28.
    1. Plicner D., Stoliński J., Wąsowicz M., Gawęda B., Hymczak H., Kapelak B., Drwiła R., Undas A. Preoperative values of inflammatory markers predict clinical outcomes in patients after CABG, regardless of the use of cardiopulmonary bypass. Indian Heart J. 2016;68(Suppl. S3):S10–S15. doi: 10.1016/j.ihj.2016.10.002.
    1. Hausenloy D.J., Chilian W., Crea F., Davidson S.M., Ferdinandy P., Garcia-Dorado D., van Royen N., Schulz R., Heusch G. The Coronary Circulation in Acute Myocardial Ischaemia/Reperfusion Injury: A Target for Cardioprotection. Cardiovasc. Res. 2019;115:1143–1155. doi: 10.1093/cvr/cvy286.
    1. Garcia-Dorado D., Barba I., Inserte J. Twenty-five years of preconditioning: Are we ready for ischemia? From coronary occlusion to systems biology and back. Cardiovasc. Res. 2011;91:378–381. doi: 10.1093/cvr/cvr140.
    1. Tsutsumi Y.M., Yokoyama T., Horikawa Y., Roth D.M., Patel H.H. Reactive oxygen species trigger ischemic and pharmacological postconditioning: In vivo and in vitro characterization. Life Sci. 2007;81:1223–1227. doi: 10.1016/j.lfs.2007.08.031.
    1. Crestanello J.A., Lingle D.M., Kamelgard J., Millili J., Whitman G.J. Ischemic preconditioning decreases oxidative stress during reperfusion: A chemiluminescence study. J. Surg. Res. 1996;65:53–58. doi: 10.1006/jsre.1996.0342.
    1. Krylatov A.V., Maslov L.N., Voronkov N.S., Boshchenko A.A., Popov S.V., Gomez L., Wang H., Jaggi A.S., Downey J.M. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev. 2018;14:290–300. doi: 10.2174/1573403X14666180702152436.
    1. Garlid A.O., Jaburek M., Jacobs J.P., Garlid K.D. Mitochondrial reactive oxygen species: Which ROS signals cardioprotection? Am. J. Physiol. Heart Circ. Physiol. 2013;305:H960–H968. doi: 10.1152/ajpheart.00858.2012.
    1. Sanada S., Komuro I., Kitakaze M. Pathophysiology of myocardial reperfusion injury: Preconditioning, postconditioning, and translational aspects of protective measures. Am. J. Physiol. Heart Circ. Physiol. 2011;301:H1723–H1741. doi: 10.1152/ajpheart.00553.2011.
    1. Xu K., LaManna J.C. Short-term hypoxic preconditioning improved survival following cardiac arrest and resuscitation in rats. Adv. Exp. Med. Biol. 2014;812:309–315. doi: 10.1007/978-1-4939-0620-8_41.
    1. Petrosillo G., Di Venosa N., Moro N., Colantuono G., Paradies V., Tiravanti E., Federici A., Ruggiero F.M., Paradies G. In vivo hyperoxic preconditioning protects against rat-heart ischemia/reperfusion injury by inhibiting mitochondrial permeability transition pore opening and cytochrome c release. Free Radic. Biol. Med. 2011;50:477–483. doi: 10.1016/j.freeradbiomed.2010.11.030.
    1. Tähepõld P., Ruusalepp A., Li G., Vaage J., Starkopf J., Valen G. Cardioprotection by breathing hyperoxic gas-relation to oxygen concentration and exposure time in rats and mice. Eur. J. Cardiothorac. Surg. 2002;6:987–994. doi: 10.1016/S1010-7940(02)00125-2.
    1. Mandel I.A., Podoksenov A.Y., Sukhodolo I.V., Podoksenov Y.u.K., Svirko Y.u.S., Kamenshchikov N.O., Mikheev S.L., Sementsov A.S., Rogovskaya Y.u.V., An D.A., et al. Myocardial protection against ischemic and reperfusion injuries (Experimental study) Bull. Exp. Biol. Med. 2017;164:21–25. doi: 10.1007/s10517-017-3917-5.
    1. Parthasarathi K., Lipowsky H.H. Capillary recruitment in response to tissue hypoxia and its dependence on red cell deformability. J. Am. Physiol. 1999;277:H2145–H2157. doi: 10.1152/ajpheart.1999.277.6.H2145.
    1. Yuan X., Lee J.W., Bowser J.L., Neudecker V., Sridhar S., Eltzschig H.K. Targeting Hypoxia Signaling for Perioperative Organ Injury. Anesth. Analg. 2018;126:308. doi: 10.1213/ANE.0000000000002288.
    1. Maslov L.N., Lishmanov Y.B., Krylatov A.V., Sementsov A.S., Portnichenko A.G., Podoksenov Y.K., Khaliulin I.G. Comparative analysis of early and delayed cardioprotective and antiarrhythmic efficacy of hypoxic preconditioning. Bull. Exp. Biol. Med. 2014;156:746–749. doi: 10.1007/s10517-014-2439-7.
    1. Kopterides P., Kapetanakis T., Siempos I.I., Magkou C., Pelekanou A., Tsaganos T., Giamarellos-Bourboulis E., Roussos C. Armaganidis A Short-term administration of a high oxygen concentration is not injurious in an ex-vivo rabbit model of ventilator-induced lung injury. Anesth. Analg. 2009;108:556–564. doi: 10.1213/ane.0b013e31818f10f7.
    1. Rocco M., D’Itri L., De Bels D., Corazza F., Balestra C. The “normobaric oxygen paradox”: A new tool for the anesthetist? Minerva Anestesiol. 2014;80:366–372.
    1. Baharvand B., Dehaj M.E., Foadaddini M., Rasoulian B., Poorkhalili K., Aghai H.W., Khoshbaten A. Delay cardioprotective effects of hyperoxia preconditioning prolonged by intermittent exposure. J. Surg. Res. 2010;160:53–59. doi: 10.1016/j.jss.2008.12.034.
    1. Young R.W. Hyperoxia: A review of the risks and benefits in adult cardiac surgery. J. Extra-Corpor. Technol. 2012;44:241.
    1. Glazachev O., Kopylov P., Susta D., Dudnik E., Zagaynaya E. Adaptations following an intermittent hypoxia-hyperoxia training in coronary artery disease patients: A controlled study. Clin. Cardiol. 2017;40:370–376. doi: 10.1002/clc.22670.
    1. Rodriguez-Pascual F., Busnadiego O., Lagares D., Lamas S. Role of endothelin in the cardiovascular system. Pharmacol. Res. 2011;63:463–472. doi: 10.1016/j.phrs.2011.01.014.
    1. Kolettis T.M., Barton M., Langleben D., Matsumura Y. Endothelin in coronary artery disease and myocardial infarction. Cardiol. Rev. 2013;21:249–256. doi: 10.1097/CRD.0b013e318283f65a.
    1. Dorman B.H., Kratz J.M., Multani M.M., Baron R., Farrar E., Walton S., Payne K., Ikonomiois J., Reeves S., Mukherjee R., et al. A prospective, randomized study of endothelin and postoperative recovery in off-pump versus conventional coronary artery bypass surgery. J. Cardiothorac. Vasc. Anesth. 2004;18:25–29. doi: 10.1053/j.jvca.2003.10.005.
    1. Kamenshchikov N.O., Mandel I.A., Podoksenov Y.K., Svirko Y.S., Lomivorotov V.V., Mikheev S.L., Kozlov B.N., Shipulin V.M., Nenakhova A.A., Anfinogenova Y.J. Nitric oxide provides myocardial protection when added to the cardiopulmonary bypass circuit during cardiac surgery: Randomized trial. J. Thorac. Cardiovasc. Surg. 2019;157:2328–2336. doi: 10.1016/j.jtcvs.2018.08.117.
    1. Calvert J.W., Lefer D.J. Myocardial protection by nitrite. Cardiovasc. Res. 2009;83:195–203. doi: 10.1093/cvr/cvp079.
    1. Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: An overview of a decade of research. J. Mol. Cell. Cardiol. 2001;33:1897–1918. doi: 10.1006/jmcc.2001.1462.
    1. Lincoln J., Hoyle C.H.V., Burnstock G. Biomedical Research Topics (1) American Scientist. Cambridge University Press; Cambridge, UK: 1997. Nitric Oxide in Health and Disease; p. 363.
    1. Schwedhelm E., Boger R.H. The role of asymmetric and symmetric dimethylarginines in renal disease. Nat. Rev. Nephrol. 2011;7:275–285. doi: 10.1038/nrneph.2011.31.
    1. Konya H., Miuchi M., Satani K., Matsutani S., Yano Y., Tsunoda T., Ikawa T., Matsuo T., Ochi F., Kusunoki Y., et al. Asymmetric dimethylarginine, a biomarker of cardiovascular complications in diabetes mellitus. World J. Exp. Med. 2015;5:110–119. doi: 10.5493/wjem.v5.i2.110.
    1. Lanzarone E., Gelmini F., Fumero A., Carini M., Costantino M.L., Fumero R., Alfieri O. Preservation of endothelium nitric oxide release during beating heart surgery with respect to continuous flow cardiopulmonary bypass. Perfusion. 2010;25:57–64. doi: 10.1177/0267659110364442.
    1. Viaro F., Baldo C.F., Capellini V.K., Celotto A.C., Bassetto S., Rodrigues A.J., Evora P.R. Plasma nitrate/nitrite (NOx) is not a useful biomarker to predict inherent cardiopulmonary bypass inflammatory response. J. Card. Surg. 2008;23:336–338. doi: 10.1111/j.1540-8191.2008.00649.x.
    1. Cernacek P., Stewart D.J., Monge J.-C., Rouleau J.-L. The endothelin system and its role in acute myocardial infarction. Can. J. Physiol. Pharmacol. 2003;81:598–606. doi: 10.1139/y03-052.
    1. Brett S.J., Quinlan G.J., Mitchell J., Pepper J.R., Evans T.W. Production of nitric oxide during surgery involving cardiopulmonary bypass. Crit. Care Med. 1998;26:272–278. doi: 10.1097/00003246-199802000-00024.
    1. Lazaratos S., Kashimura H., Nakahara A., Fukutomi H., Osuga T., Goto K. L-arginine and endogenous nitric oxide protect the gastric mucosa from endothelin-l-induced gastric ulcers in rats. J. Gastroenterol. 1995;30:578–584. doi: 10.1007/BF02367782.
    1. Cabigas B.P., Su J., Hutchins W., Shi Y., Schaefer R.B., Recinos R.F., Nilakantan V., Kindwall E., Niezgoda J.A., Baker J.E., et al. Hyperoxic and hyperbaric-induced cardioprotection: Role of nitric oxide synthase 3. Cardiovasc. Res. 2006;72:143–151. doi: 10.1016/j.cardiores.2006.06.031.
    1. Stühlinger M.C., Conci E., Haubner B.J., Stocker E.M., Schwaighofer J., Cooke J.P., Tsao P.S., Pachinger O., Metzler B. Asymmetric Dimethyl L-Arginine (ADMA) is a critical regulator of myocardial reperfusion injury. Cardiovasc. Res. 2007;75:417–425. doi: 10.1016/j.cardiores.2007.04.030.
    1. Yellon D.M., Downey J.M. Preconditioning the myocardium: From cellular physiology to clinical cardiology. Physiol. Rev. 2003;83:1113–1151. doi: 10.1152/physrev.00009.2003.
    1. Vignon-Zellweger N., Heiden S., Miyauchi T., Emoto N. Endothelin and endothelin receptors in the renal and cardiovascular systems. Life Sci. 2012;91:490–500. doi: 10.1016/j.lfs.2012.03.026.
    1. Heusch G. Molecular Basis of Cardioprotection Signal Transduction in Ischemic Pre-, Post-, and Remote Conditioning. Circ. Res. 2015;116:674–699. doi: 10.1161/CIRCRESAHA.116.305348.
    1. Boengler K., Schlüter K.-D., Schermuly R.T., Schulz R. Cardioprotection in right heart failure. Br. J. Phamacol. 2020:1–19. doi: 10.1111/bph.14992.
    1. Bibli S.-I., Andreadou I., Lazaris E., Zoga A., Varnavas V., Andreou C.C., Dagres N., Iliodromitis E.K., Kyriakides Z.S. Myocardial Protection Provided by Chronic Skeletal Muscle Ischemia Is Not Further Enhanced by Ischemic Pre- or Postconditioning: Comparative Effects on Intracellular Signaling. J. Cardiovasc. Pharmacol. Ther. 2014;19:220–227. doi: 10.1177/1074248413508002.
    1. Helmerhorst H.J.F., Schultz M.J., van der Voort P.H., deJonge E., van Westerloo D.J. Bench-to-bedside review: The effects of hyperoxia during critical illness. Crit. Care. 2015;19:284. doi: 10.1186/s13054-015-0996-4.
    1. Mandel I.A., Podoksenov Y.K., Mikheev S.L., Svirko Y.u.S., Sukhodolo I.V., Shipulin V.M., Kamenshchikov N.O., Yaroshetskiy A.I., Yavorovskiy A.G. The effect of hypoxic-hyperoxic preconditioning on the development of postoperative complications and oxygen transport in coronary surgery with a cardiopulmonary bypass. J. Anaesthesiol. Reanimatol. 2018;63:38–45. doi: 10.18821/0201-7563-2018-63-1-38-45.
    1. Kilkenny C., Browne W.J., Cuthill I.C., Emerson M., Altman D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412. doi: 10.1371/journal.pbio.1000412.

Source: PubMed

3
Subscribe