Efficacy of Virtual Reality Rehabilitation after Spinal Cord Injury: A Systematic Review

Amanda Vitória Lacerda de Araújo, Jaqueline Freitas de Oliveira Neiva, Carlos Bandeira de Mello Monteiro, Fernando Henrique Magalhães, Amanda Vitória Lacerda de Araújo, Jaqueline Freitas de Oliveira Neiva, Carlos Bandeira de Mello Monteiro, Fernando Henrique Magalhães

Abstract

Background: Spinal cord injury (SCI) is often associated with long-term impairments related to functional limitations in the sensorimotor system. The use of virtual reality (VR) technology may lead to increased motivation and engagement, besides allowing a wide range of possible tasks/exercises to be implemented in rehabilitation programs. The present review aims to investigate the possible benefits and efficacy of VR-based rehabilitation in individuals with SCI.

Methods: An electronically systematic search was performed in multiple databases (PubMed, BVS, Web of Science, Cochrane Central, and Scielo) up to May 2019. MESH terms and keywords were combined in a search strategy. Two reviewers independently selected the studies in accordance with eligibility criteria. The PEDro scale was used to score the methodological quality and risk of bias of the selected studies.

Results: Twenty-five studies (including 482 participants, 47.6 ± 9.5 years, 73% male) were selected and discussed. Overall, the studies used VR devices in different rehabilitation protocols to improve motor function, driving skills, balance, aerobic function, and pain level, as well as psychological and motivational aspects. A large amount of heterogeneity was observed as to the study design, VR protocols, and outcome measures used. Only seven studies (28%) had an excellent/good quality of evidence. However, substantial evidence for significant positive effects associated with VR therapy was found in most of the studies (88%), with no adverse events (88%) being reported.

Conclusion: Although the current evidence is limited, the findings suggest that VR-based rehabilitation in subjects with SCI may lead to positive effects on aerobic function, balance, pain level, and motor function recovery besides improving psychological/motivational aspects. Further high-quality studies are needed to provide a guideline to clinical practice and to draw robust conclusions about the potential benefits of VR therapy for SCI patients. Protocol details are registered on PROSPERO (registration number: CRD42016052629).

Conflict of interest statement

The authors declare no conflicts of interest.

Copyright © 2019 Amanda Vitória Lacerda de Araújo et al.

Figures

Figure 1
Figure 1
Flowchart of the search strategy of the published and unpublished literature and selection process (up to May 2019).

References

    1. van den Berg M. E. L., Castellote J. M., Mahillo-Fernandez I., de Pedro-Cuesta J. Incidence of spinal cord injury worldwide: a systematic review. Neuroepidemiology. 2010;34(3):184–192. doi: 10.1159/000279335.
    1. Kirshblum S. C., Burns S. P., Biering-Sorensen F., et al. International standards for neurological classification of spinal cord injury (revised 2011) The Journal of Spinal Cord Medicine. 2011;34(6):535–546. doi: 10.1179/204577211x13207446293695.
    1. Yozbatiran N., Keser Z., Davis M., et al. Transcranial direct current stimulation (tDCS) of the primary motor cortex and robot-assisted arm training in chronic incomplete cervical spinal cord injury: a proof of concept sham-randomized clinical study. NeuroRehabilitation. 2016;39(3):401–411. doi: 10.3233/nre-161371.
    1. Botelho R. V., Albuquerque L. D. G., Bastianello Junior R., Arantes Júnior A. A. Epidemiology of traumatic spinal injuries in Brazil: systematic review. Arquivos Brasileiros de Neurocirurgia: Brazilian Neurosurgery. 2014;33(2):100–106. doi: 10.1055/s-0038-1626255.
    1. Field-Fote E. C. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury. Physical Therapy. 2000;80(5):477–484. doi: 10.1093/ptj/80.5.477.
    1. Pietrzak E., Pullman S., McGuire A. Using virtual reality and videogames for traumatic brain injury rehabilitation: a structured literature review. Games for Health Journal. 2014;3(4):202–214. doi: 10.1089/g4h.2014.0013.
    1. Chen C.-H., Jeng M.-C., Fung C.-P., Doong J.-L., Chuang T.-Y. Psychological benefits of virtual reality for patients in rehabilitation therapy. Journal of Sport Rehabilitation. 2009;18(2):258–268. doi: 10.1123/jsr.18.2.258.
    1. Li Z., Han X.-G., Sheng J., Ma S.-J. Virtual reality for improving balance in patients after stroke: a systematic review and meta-analysis. Clinical Rehabilitation. 2016;30(5):432–440. doi: 10.1177/0269215515593611.
    1. Ravi D. K., Kumar N., Singhi P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy. 2017;103(3):245–258. doi: 10.1016/j.physio.2016.08.004.
    1. Dimbwadyo-Terrer I., Trincado-Alonso F., de los Reyes-Guzmán A., et al. Upper limb rehabilitation after spinal cord injury: a treatment based on a data glove and an immersive virtual reality environment. Disability and Rehabilitation: Assistive Technology. 2016;11(6):462–467. doi: 10.3109/17483107.2015.1027293.
    1. Kizony R., Raz L., Katz N., Weingarden H., Weiss P. L. T. Video-capture virtual reality system for patients with paraplegic spinal cord injury. The Journal of Rehabilitation Research and Development. 2005;42(5):595–608. doi: 10.1682/jrrd.2005.01.0023.
    1. Trincado-Alonso F., Dimbwadyo-Terrer I., de los Reyes-Guzman A., López-Monteagudo P., Bernal-Sahún A., Gil-Agudo A. Kinematic metrics based on the virtual reality system Toyra as an assessment of the upper limb rehabilitation in people with spinal cord injury. BioMed Research International. 2014;2014:11. doi: 10.1155/2014/904985.904985
    1. Wall T., Feinn R., Chui K., Cheng M. S. The effects of the Nintendo™ Wii Fit on gait, balance, and quality of life in individuals with incomplete spinal cord injury. The Journal of Spinal Cord Medicine. 2015;38(6):777–783. doi: 10.1179/2045772314y.0000000296.
    1. Villiger M., Bohli D., Kiper D., et al. Virtual reality–augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury. Neurorehabilitation and Neural Repair. 2013;27(8):675–683. doi: 10.1177/1545968313490999.
    1. Carlozzi N. E., Gade V., Rizzo A. S., Tulsky D. S. Using virtual reality driving simulators in persons with spinal cord injury: three screen display versus head mounted display. Disability and Rehabilitation: Assistive Technology. 2013;8(2):176–180. doi: 10.3109/17483107.2012.699990.
    1. Dimbwadyo-Terrer I., Trincado-Alonso F., Reyes-Guzmán A., et al. Clinical, functional and kinematic correlations using the virtual reality system Toyra® as upper limb rehabilitation tool in people with spinal cord injury. Proceedings of the Congress on Neurotechnology (VirtRehab 2013); September 2013; Algarve, Portugal. pp. 81–88.
    1. Roosink M., Robitaille N., Jackson P. L., Bouyer L. J., Mercier C. Interactive virtual feedback improves gait motor imagery after spinal cord injury: an exploratory study. Restorative Neurology and Neuroscience. 2016;34(2):227–235. doi: 10.3233/rnn-150563.
    1. Jordan M., Richardson E. J. Effects of virtual walking treatment on spinal cord injury-related neuropathic pain: pilot results and trends related to location of pain and at-level neuronal hypersensitivity. American Journal of Physical Medicine & Rehabilitation. 2016;95(5):390–396. doi: 10.1097/phm.0000000000000417.
    1. Sayenko D. G., Alekhina M. I., Masani K., et al. Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury. Spinal Cord. 2010;48(12):886–893. doi: 10.1038/sc.2010.41.
    1. D’Addio G., Iuppariello L., Gallo F., Bifulco P., Cesarelli M., Lanzillo B. Comparison between clinical and instrumental assessing using Wii Fit system on balance control. Proceedings of the 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA); June 2014; Lisbon, Portugal. pp. 1–5.
    1. Gaffurini P., Bissolotti L., Calza S., Calabretto C., Orizio C., Gobbo M. Energy metabolism during activity-promoting video games practice in subjects with spinal cord injury: evidences for health promotion. European Journal of Physical and Rehabilitation Medicine. 2013;49(1):23–29.
    1. Hasnan N., Engkasan J. P., Husain R., Davis G. M. High-intensity virtual-reality arm plus FES-leg interval training in individuals with spinal cord injury. Biomedical Engineering/Biomedizinische Technik. 2013;58(1) doi: 10.1515/bmt-2013-4028.
    1. Hutton B., Salanti G., Caldwell D. M., et al. The PRISMA extension statement for reporting of systematic reviews incorporating network metaanalyses of health care interventions: checklist and explanations. Annals of Internal Medicine. 2015;162(11):777–784. doi: 10.7326/m14-2385.
    1. Zorzela L., Loke Y. K., Ioannidis J. P., et al. PRISMA harms checklist: improving harms reporting in systematic reviews. BMJ. 2016;352:p. i157. doi: 10.1136/bmj.i157.
    1. Beaton D., Bombardier C., Guillemin F., Ferraz M. B. Recommendations for the Cross-Cultural Adaptation of the DASH & QuickDASH Outcome Measures. Toronto, Canada: Institute for Work & Health; 2017.
    1. O’Connor T. J., Cooper R. A., Fitzgerald S. G., et al. Evaluation of a manual wheelchair interface to computer games. Neurorehabilitation and Neural Repair. 2000;14(1):21–31. doi: 10.1177/154596830001400103.
    1. Dimbwadyo-Terrer I., Gil-Agudo A., Segura-Fragoso A., et al. Effectiveness of the virtual reality system toyra on upper limb function in people with tetraplegia: a pilot randomized clinical trial. BioMed Research International. 2016;2016:p. 12. doi: 10.1155/2016/6397828.6397828
    1. Gil-Agudo A., Dimbwadyo-Terrer I., Penasco-Martín B., de los Reyes-Guzmán A., Bernal-Sahún A., Berbel-García A. Clinical experience regarding the application of the TOyRA virtual reality system in neurorehabiliation of patients with spinal cord lesion. Rehabilitación. 2012;46(1):p. 8.
    1. Sung W.-H., Chiu T.-Y., Tsai W.-W., Cheng H., Chen J.-J. The effect of virtual reality-enhanced driving protocol in patients following spinal cord injury. Journal of the Chinese Medical Association. 2012;75(11):600–605. doi: 10.1016/j.jcma.2012.08.004.
    1. Fizzotti G., Rognoni C., Imarisio A., Meneghini A., Pistarini C., Quaglini S. Tablet technology for rehabilitation after spinal cord injury: a proof-of-concept. Studies in Health Technology and Informatics. 2015;210:479–483.
    1. Villiger M., Grabher P., Hepp-Reymond M. C., et al. Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study. Frontiers in Human Neuroscience. 2015;9:p. 254. doi: 10.3389/fnhum.2015.00254.
    1. An C.-M., Park Y.-H. The effects of semi-immersive virtual reality therapy on standing balance and upright mobility function in individuals with chronic incomplete spinal cord injury: a preliminary study. The Journal of Spinal Cord Medicine. 2018;41(2):223–229. doi: 10.1080/10790268.2017.1369217.
    1. Khurana M., Walia S., Noohu M. M. Study on the effectiveness of virtual reality game-based training on balance and functional performance in individuals with paraplegia. Topics in Spinal Cord Injury Rehabilitation. 2017;23(3):263–270. doi: 10.1310/sci16-00003.
    1. Pozeg P., Palluel E., Ronchi R., et al. Virtual reality improves embodiment and neuropathic pain caused by spinal cord injury. Neurology. 2017;89(18):1894–1903. doi: 10.1212/wnl.0000000000004585.
    1. Prasad S., Aikat R., Labani S., Khanna N. Efficacy of virtual reality in upper limb rehabilitation in patients with spinal cord injury: a pilot randomized controlled trial. Asian Spine Journal. 2018;12(5):927–934. doi: 10.31616/asj.2018.12.5.927.
    1. van Dijsseldonk R. B., de Jong L. A. F., Groen B. E., Vos-van der Hulst M., Geurts A. C. H., Keijsers N. L. W. Gait stability training in a virtual environment improves gait and dynamic balance capacity in incomplete spinal cord injury patients. Frontiers in Neurology. 2018;9:p. 963. doi: 10.3389/fneur.2018.00963.
    1. Villiger M., Liviero J., Awai L., et al. Home-based virtual reality-augmented training improves lower limb muscle strength, balance, and functional mobility following chronic incomplete spinal cord injury. Frontiers in Neurology. 2017;8:p. 635. doi: 10.3389/fneur.2017.00635.
    1. Zimmerli L., Jacky M., Lünenburger L., Riener R., Bolliger M. Increasing patient engagement during virtual reality-based motor rehabilitation. Archives of Physical Medicine and Rehabilitation. 2013;94(9):1737–1746. doi: 10.1016/j.apmr.2013.01.029.
    1. Kowalczewski J., Chong S. L., Galea M., Prochazka A. In-home tele-rehabilitation improves tetraplegic hand function. Neurorehabilitation and Neural Repair. 2011;25(5):412–422. doi: 10.1177/1545968310394869.
    1. Victora C. G., Habicht J.-P., Bryce J. Evidence-based public health: moving beyond randomized trials. American Journal of Public Health. 2004;94(3):400–405. doi: 10.2105/ajph.94.3.400.
    1. Suresh K., Thomas S. V., Suresh G. Design, data analysis and sampling techniques for clinical research. Annals of Indian Academy of Neurology. 2011;14(4):287–290. doi: 10.4103/0972-2327.91951.
    1. Boutron I., Guittet L., Estellat C., Moher D., Hróbjartsson A., Ravaud P. Reporting methods of blinding in randomized trials assessing nonpharmacological treatments. PLoS Medicine. 2007;4(2):p. e61. doi: 10.1371/journal.pmed.0040061.
    1. Durlak J. A. How to select, calculate, and interpret effect sizes. Journal of Pediatric Psychology. 2009;34(9):917–928. doi: 10.1093/jpepsy/jsp004.
    1. Berben L., Sereika S. M., Engberg S. Effect size estimation: methods and examples. International Journal of Nursing Studies. 2012;49(8):1039–1047. doi: 10.1016/j.ijnurstu.2012.01.015.
    1. Joo L. Y., Yin T. S., Xu D., et al. A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. Journal of Rehabilitation Medicine. 2010;42(5):437–441. doi: 10.2340/16501977-0528.
    1. Sin H., Lee G. Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia. American Journal of Physical Medicine & Rehabilitation. 2013;92(10):871–880. doi: 10.1097/phm.0b013e3182a38e40.
    1. Lohse K. R., Hilderman C. G., Cheung K. L., Tatla S., Van der Loos H. F. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One. 2014;9(3) doi: 10.1371/journal.pone.0093318.e93318
    1. Lanningham-Foster L., Foster R. C., McCrady S. K., Jensen T. B., Mitre N., Levine J. A. Activity-promoting video games and increased energy expenditure. The Journal of Pediatrics. 2009;154(6):819–823. doi: 10.1016/j.jpeds.2009.01.009.
    1. Nardini C. The ethics of clinical trials. Ecancermedicalscience. 2014;8:p. 387. doi: 10.3332/ecancer.2014.387.
    1. Corbetta D., Imeri F., Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. Journal of Physiotherapy. 2015;61(3):117–124. doi: 10.1016/j.jphys.2015.05.017.
    1. Darekar A., McFadyen B. J., Lamontagne A., Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. Journal of NeuroEngineering and Rehabilitation. 2015;12(1):p. 46. doi: 10.1186/s12984-015-0035-3.
    1. Dos Santos L. R. A., Carregosa A. A., Masruha M. R., et al. The use of nintendo wii in the rehabilitation of poststroke patients: a systematic review. Journal of Stroke and Cerebrovascular Diseases. 2015;24(10):2298–2305. doi: 10.1016/j.jstrokecerebrovasdis.2015.06.010.
    1. Laver K. E., George S., Thomas S., Deutsch J. E., Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews. 2011;9CD008349
    1. Luque-Moreno C., Ferragut-Garcias A., Rodriguez-Blanco C., et al. A decade of progress using virtual reality for poststroke lower extremity rehabilitation: systematic review of the intervention methods. BioMed Research International. 2015;2015:7. doi: 10.1155/2015/342529.342529
    1. Dockx K., Bekkers E. M., Van den Bergh V., et al. Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database of Systematic Reviews. 2016;12 doi: 10.1002/14651858.CD010760.pub2.CD010760
    1. van de Ven R. M., Murre J. M. J., Veltman D. J., Schmand B. A. Computer-based cognitive training for executive functions after stroke: a systematic review. Frontiers in Human Neuroscience. 2016;10:p. 150. doi: 10.3389/fnhum.2016.00150.
    1. Imam B., Jarus T. Virtual reality rehabilitation from social cognitive and motor learning theoretical perspectives in stroke population. Rehabilitation Research and Practice. 2014;2014:11. doi: 10.1155/2014/594540.594540
    1. Fawcett J. W., Curt A., Steeves J. D., et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord. 2007;45(3):190–205. doi: 10.1038/sj.sc.3102007.
    1. Steeves J. D., Lammertse D., Curt A., et al. Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord. 2007;45(3):206–221. doi: 10.1038/sj.sc.3102008.
    1. Moher D., Hopewell S., Schulz K. F., et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. International Journal of Surgery. 2012;10(1):28–55. doi: 10.1016/j.ijsu.2011.10.001.
    1. de Araujo A. V. L., Barbosa V. R. N., Galdino G. S., et al. Effects of high-frequency transcranial magnetic stimulation on functional performance in individuals with incomplete spinal cord injury: study protocol for a randomized controlled trial. Trials. 2017;18(1):p. 522. doi: 10.1186/s13063-017-2280-1.
    1. Malay S., Chung K. The choice of controls for providing validity and evidence in clinical research. Plastic and Reconstructive Surgery. 2012;130(4):959–965. doi: 10.1097/prs.0b013e318262f4c8.
    1. Button K. S., Ioannidis J. P. A., Mokrysz C., et al. Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience. 2013;14(5):365–376. doi: 10.1038/nrn3475.
    1. Malloy K. M., Milling L. S. The effectiveness of virtual reality distraction for pain reduction: a systematic review. Clinical Psychology Review. 2010;30(8):1011–1018. doi: 10.1016/j.cpr.2010.07.001.
    1. Shin J.-H., Park S. B., Jang S. H. Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: a randomized, controlled study. Computers in Biology and Medicine. 2015;63:92–98. doi: 10.1016/j.compbiomed.2015.03.011.

Source: PubMed

3
Subscribe