The effects of tourniquet use on blood loss in primary total knee arthroplasty for patients with osteoarthritis: a meta-analysis

D F Cai, Q H Fan, H H Zhong, S Peng, H Song, D F Cai, Q H Fan, H H Zhong, S Peng, H Song

Abstract

Background: The tourniquet is a common medical instrument used in total knee arthroplasty (TKA). However, there has always been a debate about the use of a tourniquet and there is no published meta-analysis to study the effects of a tourniquet on blood loss in primary TKA for patients with osteoarthritis.

Methods: We performed a literature review on high-quality clinical studies to determine the effects of using a tourniquet or not on blood loss in cemented TKA. PubMed, Web of Science, MEDLINE, Embase, and the Cochrane Library were searched up to November 2018 for relevant randomized controlled trials (RCTs). We conducted a meta-analysis following the guidelines of the Cochrane Reviewer's Handbook. We used the Cochrane Collaboration's tool for assessing the risk of bias of each trial. The statistical analysis was performed with Review Manager statistical software (version 5.3).

Results: Eleven RCTs involving 541 patients (541 knees) were included in this meta-analysis. There were 271 patients (271 knees) in the tourniquet group and 270 patients (270 knees) in the no tourniquet group. The results showed that using a tourniquet significantly decreased intraoperative blood loss (P < 0.002), calculated blood loss (P < 0.002), and the time of operation (P < 0.002), but tourniquet use did not significantly decrease postoperative blood loss (P > 0.05), total blood loss (P > 0.05), the rate of transfusion (P > 0.05), and of deep vein thrombosis (DVT) (P > 0.05) in TKA.

Conclusions: Using a tourniquet can significantly decrease intraoperative blood loss, calculated blood loss, and operation time but does not significantly decrease the rate of transfusion or the rate of DVT in TKA. More research is needed to determine if there are fewer complications in TKA without the use of tourniquets.

Keywords: Blood loss; Complications; Total knee arthroplasty; Tourniquet.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart showing the selection process of randomized controlled trials
Fig. 2
Fig. 2
Risk of bias summary. Green indicates that the criterion is satisfied. Yellow indicates that it is unclear whether the criterion is satisfied or not. Red indicates that the study did not meet the criterion
Fig. 3
Fig. 3
Forest plot for intraoperative blood loss
Fig. 4
Fig. 4
Forest plot for postoperative blood loss
Fig. 5
Fig. 5
Forest plot for total blood loss
Fig. 6
Fig. 6
Forest plot for calculated blood loss
Fig. 7
Fig. 7
Forest plot for transfusion rate
Fig. 8
Fig. 8
Forest plot for DVT rate
Fig. 9
Fig. 9
Forest plot for operation time

References

    1. Berry DJ, Bozic KJ. Current practice patterns in primary hip and knee arthroplasty among members of the American Association of Hip and Knee Surgeons. J Arthroplast. 2010;25(6 Suppl):2–4.
    1. Jarolem KL, Scott DF, Jaffe WL, et al. A comparison of blood loss and transfusion requirements in total knee arthroplasty with and without arterial tourniquet. Am J Orthop (Belle Mead NJ) 1995;24(12):906–909.
    1. Parvizi J, Diaz-Ledezma C. Total knee replacement with the use of a tourniquet: more pros than cons. Bone Joint J. 2013;95-b(11 Suppl A):133–134.
    1. Alcelik I, Pollock RD, Sukeik M, et al. A comparison of outcomes with and without a tourniquet in total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. J Arthroplast. 2012;27(3):331–340.
    1. Schnettler T, Papillon N, Rees H. Use of a tourniquet in total knee arthroplasty causes a paradoxical increase in total blood loss. J Bone Joint Surg Am. 2017;99(16):1331–1336.
    1. Palmer SH, Graham G. Tourniquet-induced rhabdomyolysis after total knee replacement. Ann R Coll Surg Engl. 1994;76(6):416–417.
    1. Carroll K, Dowsey M, Choong P, et al. Risk factors for superficial wound complications in hip and knee arthroplasty. Clin Microbiol Infect. 2014;20(2):130–135.
    1. Weber AB, Worland RL, Jessup DE, et al. The consequences of lateral release in total knee replacement: a review of over 1000 knees with follow up between 5 and 11 years. Knee. 2003;10(2):187–191.
    1. Rama KR, Apsingi S, Poovali S, et al. Timing of tourniquet release in knee arthroplasty. Meta-analysis of randomized, controlled trials. J Bone Joint Surg Am. 2007;89(4):699–705.
    1. Li B, Wen Y, Wu H, et al. The effect of tourniquet use on hidden blood loss in total knee arthroplasty. Int Orthop. 2009;33(5):1263–1268.
    1. Kvederas G, Porvaneckas N, Andrijauskas A, et al. A randomized double-blind clinical trial of tourniquet application strategies for total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2013;21(12):2790–2799.
    1. Pollock M, Fernandes RM, Becker LA, et al. What guidance is available for researchers conducting overviews of reviews of healthcare interventions? A scoping review and qualitative metasummary. Syst Rev. 2016;5(1):016–0367.
    1. Gross JB. Estimating allowable blood loss: corrected for dilution. Anesthesiology. 1983;58(3):277–280.
    1. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Bmj. 2011;18(343).
    1. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. Bmj. 2003;327(7414):557–560.
    1. Chiappelli F, Kasar VR, Balenton N, et al. Quantitative consensus in systematic reviews: current and future challenges in translational science. Bioinformation. 2018;14(2):86–92.
    1. Kageyama K, Nakajima Y, Shibasaki M, et al. Increased platelet, leukocyte, and endothelial cell activity are associated with increased coagulability in patients after total knee arthroplasty. J Thromb Haemost. 2007;5(4):738–745.
    1. Matziolis G, Drahn T, Schroder JH, et al. Endothelin-1 is secreted after total knee arthroplasty regardless of the use of a tourniquet. J Orthop Res. 2005;23(2):392–396.
    1. Aglietti P, Baldini A, Vena LM, et al. Effect of tourniquet use on activation of coagulation in total knee replacement. Clin Orthop Relat Res. 2000;371:169–177.
    1. Ejaz A, Laursen AC, Kappel A, et al. Tourniquet induced ischemia and changes in metabolism during TKA: a randomized study using microdialysis. BMC Musculoskelet Disord. 2015;16:326.
    1. Dennis DA, Kittelson AJ, Yang CC, et al. Does tourniquet use in TKA affect recovery of lower extremity strength and function? A randomized trial. Clin Orthop Relat Res. 2016;474(1):69–77.
    1. Tai TW, Chang CW, Lai KA, et al. Effects of tourniquet use on blood loss and soft-tissue damage in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2012;94(24):2209–2215.
    1. Wakankar HM, Nicholl JE, Koka R, et al. The tourniquet in total knee arthroplasty. A prospective, randomised study. J Bone Joint Surg Br. 1999;81(1):30–33.
    1. Vandenbussche E, Duranthon LD, Couturier M, et al. The effect of tourniquet use in total knee arthroplasty. Int Orthop. 2002;26(5):306–309.
    1. Ledin H, Aspenberg P, Good L. Tourniquet use in total knee replacement does not improve fixation, but appears to reduce final range of motion. Acta Orthop. 2012;83(5):499–503.
    1. Liu D, Graham D, Gillies K, et al. Effects of tourniquet use on quadriceps function and pain in total knee arthroplasty. Knee Surg Relat Res. 2014;26(4):207–213.
    1. Ejaz A, Laursen AC, Kappel A, et al. Faster recovery without the use of a tourniquet in total knee arthroplasty. Acta Orthop. 2014;85(4):422–426.
    1. Zhang W, Li N, Chen S, et al. The effects of a tourniquet used in total knee arthroplasty: a meta-analysis. J Orthop Surg Res. 2014;9(1):13.
    1. Tie K, Hu D, Qi Y, et al. Effects of tourniquet release on total knee arthroplasty. Orthopedics. 2016;39(4):e642–e650.
    1. Leon-Munoz VJ, Lison-Almagro AJ, Hernandez-Garcia CH, et al. Silicone ring tourniquet versus pneumatic cuff tourniquet in total knee arthroplasty surgery: a randomised comparative study. J Orthop. 2018;15(2):545–548.
    1. Tai TW, Lin CJ, Jou IM, et al. Tourniquet use in total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2011;19(7):1121–1130.
    1. Harvey EJ, Leclerc J, Brooks CE, et al. Effect of tourniquet use on blood loss and incidence of deep vein thrombosis in total knee arthroplasty. J Arthroplast. 1997;12(3):291–296.
    1. Tetro AM, Rudan JF. The effects of a pneumatic tourniquet on blood loss in total knee arthroplasty. Can J Surg. 2001;44(1):33–38.
    1. Fukuda A, Hasegawa M, Kato K, et al. Effect of tourniquet application on deep vein thrombosis after total knee arthroplasty. Arch Orthop Trauma Surg. 2007;127(8):671–675.
    1. Stucinskas J, Tarasevicius S, Cebatorius A, et al. Conventional drainage versus four hour clamping drainage after total knee arthroplasty in severe osteoarthritis: a prospective, randomised trial. Int Orthop. 2009;33(5):1275–1278.
    1. Shen PC, Jou IM, Lin YT, et al. Comparison between 4-hour clamping drainage and nonclamping drainage after total knee arthroplasty. J Arthroplast. 2005;20(7):909–913.
    1. Raleigh E, Hing CB, Hanusiewicz AS, et al. Drain clamping in knee arthroplasty, a randomized controlled trial. ANZ J Surg. 2007;77(5):333–335.
    1. Park JH, Choi SW, Shin EH, et al. The optimal protocol to reduce blood loss and blood transfusion after unilateral total knee replacement: low-dose IA-TXA plus 30-min drain clamping versus drainage clamping for the first 3 h without IA-TXA. J Orthop Surg. 2017;25(3):2309499017731626.
    1. Lotke PA, Faralli VJ, Orenstein EM, et al. Blood loss after total knee replacement. Effects of tourniquet release and continuous passive motion. J Bone Joint Surg Am. 1991;73(7):1037–1040.
    1. Levy AS, Marmar E. The role of cold compression dressings in the postoperative treatment of total knee arthroplasty. Clin Orthop Relat Res. 1993;297:174–178.
    1. Erskine JG, Fraser C, Simpson R, et al. Blood loss with knee joint replacement. J R Coll Surg Edinb. 1981;26(5):295–297.
    1. Bourke DL, Smith TC. Estimating allowable hemodilution. Anesthesiology. 1974;41(6):609–612.
    1. Zhang P, Liang Y, He J, et al. Timing of tourniquet release in total knee arthroplasty: a meta-analysis. Medicine (Baltimore) 2017;96(17):e6786.
    1. Huang Z, Ma J, Zhu Y, et al. Timing of tourniquet release in total knee arthroplasty. Orthopedics. 2015;38(7):445–451.
    1. Parmet JL, Horrow JC, Berman AT, et al. The incidence of large venous emboli during total knee arthroplasty without pneumatic tourniquet use. Anesth Analg. 1998;87(2):439–444.
    1. Zhang W, Liu A, Hu D, et al. Effects of the timing of tourniquet release in cemented total knee arthroplasty: a systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res. 2014;9:125.
    1. Abdel-Salam A, Eyres KS. Effects of tourniquet during total knee arthroplasty. A prospective randomised study. J Bone Joint Surg Br. 1995;77(2):250–253.
    1. Willis-Owen CA, Konyves A, Martin DK. Factors affecting the incidence of infection in hip and knee replacement: an analysis of 5277 cases. J Bone Joint Surg Br. 2010;92(8):1128–1133.

Source: PubMed

3
Subscribe