Protein Oxidative Damage in UV-Related Skin Cancer and Dysplastic Lesions Contributes to Neoplastic Promotion and Progression

Antonella Tramutola, Susanna Falcucci, Umberto Brocco, Francesca Triani, Chiara Lanzillotta, Michele Donati, Chiara Panetta, Fabiola Luzi, Federica Iavarone, Federica Vincenzoni, Massimo Castagnola, Marzia Perluigi, Fabio Di Domenico, Federico De Marco, Antonella Tramutola, Susanna Falcucci, Umberto Brocco, Francesca Triani, Chiara Lanzillotta, Michele Donati, Chiara Panetta, Fabiola Luzi, Federica Iavarone, Federica Vincenzoni, Massimo Castagnola, Marzia Perluigi, Fabio Di Domenico, Federico De Marco

Abstract

The ultraviolet (UV) component of solar radiation is the major driving force of skin carcinogenesis. Most of studies on UV carcinogenesis actually focus on DNA damage while their proteome-damaging ability and its contribution to skin carcinogenesis have remained largely underexplored. A redox proteomic analysis of oxidized proteins in solar-induced neoplastic skin lesion and perilesional areas has been conducted showing that the protein oxidative burden mostly concerns a selected number of proteins participating to a defined set of functions, namely: chaperoning and stress response; protein folding/refolding and protein quality control; proteasomal function; DNA damage repair; protein- and vesicle-trafficking; cell architecture, adhesion/extra-cellular matrix (ECM) interaction; proliferation/oncosuppression; apoptosis/survival, all of them ultimately concurring either to structural damage repair or to damage detoxication and stress response. In peri-neoplastic areas the oxidative alterations are conducive to the persistence of genetic alterations, dysfunctional apoptosis surveillance, and a disrupted extracellular environment, thus creating the condition for transformant clones to establish, expand and progress. A comparatively lower burden of oxidative damage is observed in neoplastic areas. Such a finding can reflect an adaptive selection of best fitting clones to the sharply pro-oxidant neoplastic environment. In this context the DNA damage response appears severely perturbed, thus sustaining an increased genomic instability and an accelerated rate of neoplastic evolution. In conclusion UV radiation, in addition to being a cancer-initiating agent, can act, through protein oxidation, as a cancer-promoting agent and as an inducer of genomic instability concurring with the neoplastic progression of established lesions.

Keywords: cancer promotion; carcinogenesis; protein damage; protein oxidation; redox proteomics; skin cancer; solar radiation; stress response.; ultraviolet.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Histopathological presentation tissue samples and pathological diagnosis (SCC: squamous cell carcinoma) (BCC: basal-like cell carcinoma). Low magnification pictures on the left hand side (Pts 5; 8; 10; 12 and 16, 4× magnification; pts. 7 and 14 magnification 1.5×). On right hand side particulars at higher magnification (pts 5 and 12, 20×; pts 7 and 14, 4×; Pts 8, 10 and 16, 10×).
Figure 2
Figure 2
BstUI restriction fragment length polymorphism (RFLP) analysis of p53 codon 72 dimorphism. The presence of a guanosine at nucleotide 216 in the exon 4th amplicon can be revealed BstUI restriction. Thus, the presence of two 131 and 208 bp bands in digested lane (D) stands for the R72 variant (black circle) whereas the full length 339 bp undigested band indicates the P72 variant (red circle). Both digested and undigested bands in D lanes indicate Pro/Arg heterozygous (blue box). (U) Undigested DNA.
Figure 3
Figure 3
Slot blot analysis of total protein carbonylation. Panel A (left hand side): Slot blot of a representative sample from non-photo exposed (NPE), perilesional (PL) and lesional (L) groups. A triplicate of 4 samples per group is showed. Panel B (right hand side): Densitometric analysis of total protein carbonylation in NPE, PL and L groups. NPE is set as 100%. The bars show the averages of 7 samples per group ± standard error of the mean (SEM); * p < 0.05, ** p < 0.01.
Figure 4
Figure 4
Two-dimensional (2D) electrophoresis images. Panel A: Workflow of redox proteomics approach employed in the study. Panel B: Representative 2D gel from NPE samples showing position and ID number of the spots identified to be differentially carbonylated in both PL vs. NPE and PL vs. L comparison groups. Proteins matching ID spots numbers are reported in Table 2. Panel C: Representative 2D blots from NPE, PL and L samples showing the different amount of total protein carbonylation.
Figure 5
Figure 5
STRING analysis PL vs. NPE. Panel A: Network statistics reporting data concerning the number of nodes and edges, the average node degree, the average local clustering coefficient, the expected number of edges and the PPI enrichment p-value. Panel B: Network interaction image showing nodes and edges between the proteins identified. The thickness of the line indicates the strength of the interaction between the proteins. The colours of the sphere indicate the biological processes to which the protein belongs. Panel C: Network interaction table reports all the significant interactions (min 0.4) between the protein of the PL vs. NPE network. Panel D: Biological process table reports the main pathways to which the protein of the networks belongs. For each biological process identified, the corresponding Gene Ontology (GO) pathway, the number and identity of proteins and the false discovery rate is reported.
Figure 6
Figure 6
STRING analysis PL vs. L. Panel A: Network statistics reporting data concerning the number of nodes and edges, the average node degree, the average local clustering coefficient, the expected number of edges and the PPI enrichment p-value. Panel B: Network interaction image showing nodes and edges between the proteins identified. The thickness of the line indicates the strength of the interaction between the proteins. The colours of the sphere indicate the biological processes to which the protein belongs. Panel C: Network interaction table reporting all the significant interactions (min 0.4) between the protein of the PL vs. NPE network. Panel D: Biological process table reporting the main pathways to which the protein of the networks belongs. For each biological process identified, the corresponding GO pathway, the number and identity of proteins and the false discovery rate is reported.

References

    1. Nishisgori C. Current concept of photocarcinogenesis. Photochem. Photobiol. Sci. 2015;14:1713–1721. doi: 10.1039/C5PP00185D.
    1. Black J.O., Coffin C.M., Parham D.M., Hawkins D.S., Speights R.A., Spunt S.L. Opportunities for Improvement in Pathology Reporting of Childhood Nonrhabdomyosarcoma Soft Tissue Sarcomas: A Report From Children’s Oncology Group (COG) Study ARST0332. Am. J. Clin. Pathol. 2016;146:328–338. doi: 10.1093/ajcp/aqw114.
    1. Ziegler A., Leffell D.J., Kunala S., Sharma H.W., Gailani M., Simon J.A., Halperin A.J., Baden H.P., Shapiro P.E., Bale A.E., et al. Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc. Natl. Acad. Sci. USA. 1993;90:4216–4220. doi: 10.1073/pnas.90.9.4216.
    1. Ziegler A., Jonason A.S., Leffell D.J., Simon J.A., Sharma H.W., Kimmelman J., Remington L., Jacks T., Brash D.E. Sunburn and p53 in the onset of skin cancer. Nature. 1994;372:773–776. doi: 10.1038/372773a0.
    1. Jonason A.S., Kunala S., Price G.J., Restifo R.J., Spinelli H.M., Persing J.A., Leffell D.J., Tarone R.E., Brash D.E. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl. Acad. Sci. USA. 1996;93:14025–14029. doi: 10.1073/pnas.93.24.14025.
    1. Gueranger Q., Li F., Peacock M., Larnicol-Fery A., Brem R., Macpherson P., Egly J.M., Karran P. Protein oxidation and DNA repair inhibition by 6-thioguanine and UVA radiation. J. Investig. Dermatol. 2014;134:1408–1417. doi: 10.1038/jid.2013.509.
    1. Xu G., Snellman E., Bykov V.J., Jansen C.T., Hemminki K. Cutaneous melanoma patients have normal repair kinetics of ultraviolet-induced DNA repair in skin in situ. J. Investig. Dermatol. 2000;114:628–631. doi: 10.1046/j.1523-1747.2000.00943.x.
    1. Perluigi M., Di Domenico F., Blarzino C., Foppoli C., Cini C., Giorgi A., Grillo C., De Marco F., Butterfield D.A., Schinina M.E., et al. Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: A proteomic approach. Proteome Sci. 2010;8:13. doi: 10.1186/1477-5956-8-13.
    1. Perluigi M., Giorgi A., Blarzino C., De Marco F., Foppoli C., Di Domenico F., Butterfield D.A., Schinina M.E., Cini C., Coccia R. Proteomics analysis of protein expression and specific protein oxidation in human papillomavirus transformed keratinocytes upon UVB irradiation. J. Cell. Mol. Med. 2009;13:1809–1822. doi: 10.1111/j.1582-4934.2008.00465.x.
    1. De Marco F., Bucaj E., Foppoli C., Fiorini A., Blarzino C., Filipi K., Giorgi A., Schinina M.E., Di Domenico F., Coccia R., et al. Oxidative stress in HPV-driven viral carcinogenesis: Redox proteomics analysis of HPV-16 dysplastic and neoplastic tissues. PLoS ONE. 2012;7:e34366. doi: 10.1371/journal.pone.0034366.
    1. Wu C.L., Chou H.C., Cheng C.S., Li J.M., Lin S.T., Chen Y.W., Chan H.L. Proteomic analysis of UVB-induced protein expression- and redox-dependent changes in skin fibroblasts using lysine- and cysteine-labeling two-dimensional difference gel electrophoresis. J. Proteom. 2012;75:1991–2014. doi: 10.1016/j.jprot.2011.12.038.
    1. McAdam E., Brem R., Karran P. Oxidative Stress-Induced Protein Damage Inhibits DNA Repair and Determines Mutation Risk and Therapeutic Efficacy. Mol. Cancer Res. 2016;14:612–622. doi: 10.1158/1541-7786.MCR-16-0053.
    1. Liu D., Xu Y. p53, oxidative stress, and aging. Antioxid. Redox Signal. 2011;15:1669–1678. doi: 10.1089/ars.2010.3644.
    1. Sakamuro D., Sabbatini P., White E., Prendergast G.C. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene. 1997;15:887–898. doi: 10.1038/sj.onc.1201263.
    1. Thomas M., Kalita A., Labrecque S., Pim D., Banks L., Matlashewski G. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol. Cell. Biol. 1999;19:1092–1100. doi: 10.1128/MCB.19.2.1092.
    1. Dumont P., Leu J.I., Della Pietra III A.C., George D.L., Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 2003;33:357–365. doi: 10.1038/ng1093.
    1. Storey A., Thomas M., Kalita A., Harwood C., Gardiol D., Mantovani F., Breuer J., Leigh I.M., Matlashewski G., Banks L. Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature. 1998;393:229–234. doi: 10.1038/30400.
    1. Koushik A., Platt R.W., Franco E.L. p53 codon 72 polymorphism and cervical neoplasia: A meta-analysis review. Cancer Epidemiol. Biomark. Prev. 2004;13:11–22. doi: 10.1158/1055-9965.EPI-083-3.
    1. Bendesky A., Rosales A., Salazar A.M., Sordo M., Peniche J., Ostrosky-Wegman P. p53 codon 72 polymorphism, DNA damage and repair, and risk of non-melanoma skin cancer. Mutat. Res. 2007;619:38–44. doi: 10.1016/j.mrfmmm.2007.01.001.
    1. Newton C.R., Graham A., Heptinstall L.E., Powell S.J., Summers C., Kalsheker N., Smith J.C., Markham A.F. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS) Nucleic Acids Res. 1989;17:2503–2516. doi: 10.1093/nar/17.7.2503.
    1. Sina M., Pedram M., Ghojazadeh M., Kochaki A., Aghbali A. P53 gene codon 72 polymorphism in patients with oral squamous cell carcinoma in the population of northern Iran. Med. Oral Patol. Oral Cir. Bucal. 2014;19:e550–e555. doi: 10.4317/medoral.19794.
    1. Nakazawa H., English D., Randell P.L., Nakazawa K., Martel N., Armstrong B.K., Yamasaki H. UV and skin cancer: Specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc. Natl. Acad. Sci. USA. 1994;91:360–364. doi: 10.1073/pnas.91.1.360.
    1. Hufbauer M., Cooke J., van der Horst G.T., Pfister H., Storey A., Akgul B. Human papillomavirus mediated inhibition of DNA damage sensing and repair drives skin carcinogenesis. Mol. Cancer. 2015;14:183. doi: 10.1186/s12943-015-0453-7.
    1. Howley P.M., Pfister H.J. Beta genus papillomaviruses and skin cancer. Virology. 2015;479:290–296. doi: 10.1016/j.virol.2015.02.004.
    1. Tommasino M. HPV and skin carcinogenesis. Papillomavirus Res. 2019;7:129–131. doi: 10.1016/j.pvr.2019.04.003.
    1. Jensen L.J., Kuhn M., Stark M., Chaffron S., Creevey C., Muller J., Doerks T., Julien P., Roth A., Simonovic M., et al. STRING 8—A global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009;37:D412–D416. doi: 10.1093/nar/gkn760.
    1. Szklarczyk D., Morris J.H., Cook H., Kuhn M., Wyder S., Simonovic M., Santos A., Doncheva N.T., Roth A., Bork P., et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–D368. doi: 10.1093/nar/gkw937.
    1. Griess G.A., Zigman S., Yulo T. Modification of calf lens crystallins as determined by gel electrophoresis. Mol. Cell. Biochem. 1976;12:9–14. doi: 10.1007/BF01731898.
    1. Sander C.S., Chang H., Salzmann S., Muller C.S., Ekanayake-Mudiyanselage S., Elsner P., Thiele J.J. Photoaging is associated with protein oxidation in human skin in vivo. J. Investig. Dermatol. 2002;118:618–625. doi: 10.1046/j.1523-1747.2002.01708.x.
    1. Pattison D.I., Rahmanto A.S., Davies M.J. Photo-oxidation of proteins. Photochem. Photobiol. Sci. 2012;11:38–53. doi: 10.1039/C1PP05164D.
    1. Loeb K.R., Asgari M.M., Hawes S.E., Feng Q.H., Stern J.E., Jiang M.J., Argenyi Z.B., de Villiers E.M., Kiviat N.B. Analysis of Tp53 Codon 72 Polymorphisms, Tp53 Mutations, and HPV Infection in Cutaneous Squamous Cell Carcinomas. PLoS ONE. 2012;7:e34422. doi: 10.1371/journal.pone.0034422.
    1. Xu S., Sankar S., Neamati N. Protein disulfide isomerase: A promising target for cancer therapy. Drug Discov. Today. 2014;19:222–240. doi: 10.1016/j.drudis.2013.10.017.
    1. Bi S., Hong P.W., Lee B., Baum L.G. Galectin-9 binding to cell surface protein disulfide isomerase regulates the redox environment to enhance T-cell migration and HIV entry. Proc. Natl. Acad. Sci. USA. 2011;108:10650–10655. doi: 10.1073/pnas.1017954108.
    1. Hashida T., Kotake Y., Ohta S. Protein disulfide isomerase knockdown-induced cell death is cell-line-dependent and involves apoptosis in MCF-7 cells. J. Toxicol. Sci. 2011;36:1–7. doi: 10.2131/jts.36.1.
    1. Lovat P.E., Corazzari M., Armstrong J.L., Martin S., Pagliarini V., Hill D., Brown A.M., Piacentini M., Birch-Machin M.A., Redfern C.P. Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress. Cancer Res. 2008;68:5363–5369. doi: 10.1158/0008-5472.CAN-08-0035.
    1. Papaioannou A., Chevet E. Driving Cancer Tumorigenesis and Metastasis Through UPR Signaling. Curr. Top. Microbiol. Immunol. 2018;414:159–192. doi: 10.1007/82_2017_36.
    1. Shang Y., Xu X., Duan X., Guo J., Wang Y., Ren F., He D., Chang Z. Hsp70 and Hsp90 oppositely regulate TGF-beta signaling through CHIP/Stub1. Biochem. Biophys. Res. Commun. 2014;446:387–392. doi: 10.1016/j.bbrc.2014.02.124.
    1. Didelot C., Lanneau D., Brunet M., Bouchot A., Cartier J., Jacquel A., Ducoroy P., Cathelin S., Decologne N., Chiosis G., et al. Interaction of heat-shock protein 90 beta isoform (HSP90 beta) with cellular inhibitor of apoptosis 1 (c-IAP1) is required for cell differentiation. Cell Death Differ. 2008;15:859–866. doi: 10.1038/cdd.2008.5.
    1. Molinari M., Eriksson K.K., Calanca V., Galli C., Cresswell P., Michalak M., Helenius A. Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol. Cell. 2004;13:125–135. doi: 10.1016/S1097-2765(03)00494-5.
    1. Zamanian M., Veerakumarasivam A., Abdullah S., Rosli R. Calreticulin and cancer. Pathol. Oncol. Res. 2013;19:149–154. doi: 10.1007/s12253-012-9600-2.
    1. Bulteau A.L., Moreau M., Nizard C., Friguet B. Impairment of proteasome function upon UVA- and UVB-irradiation of human keratinocytes. Free Radic. Biol. Med. 2002;32:1157–1170. doi: 10.1016/S0891-5849(02)00816-X.
    1. Daly M.J. Death by protein damage in irradiated cells. DNA Repair. 2012;11:12–21. doi: 10.1016/j.dnarep.2011.10.024.
    1. Wondrak G.T., Roberts M.J., Cervantes-Laurean D., Jacobson M.K., Jacobson E.L. Proteins of the extracellular matrix are sensitizers of photo-oxidative stress in human skin cells. J. Investig. Dermatol. 2003;121:578–586. doi: 10.1046/j.1523-1747.2003.12414.x.
    1. Kranz P., Neumann F., Wolf A., Classen F., Pompsch M., Ocklenburg T., Baumann J., Janke K., Baumann M., Goepelt K., et al. PDI is an essential redox-sensitive activator of PERK during the unfolded protein response (UPR) Cell Death Dis. 2017;8:e2986. doi: 10.1038/cddis.2017.369.
    1. Yaglom J., O’Callaghan-Sunol C., Gabai V., Sherman M.Y. Inactivation of dual-specificity phosphatases is involved in the regulation of extracellular signal-regulated kinases by heat shock and hsp72. Mol. Cell. Biol. 2003;23:3813–3824. doi: 10.1128/MCB.23.11.3813-3824.2003.
    1. Colvin T.A., Gabai V.L., Gong J., Calderwood S.K., Li H., Gummuluru S., Matchuk O.N., Smirnova S.G., Orlova N.V., Zamulaeva I.A., et al. Hsp70-Bag3 interactions regulate cancer-related signaling networks. Cancer Res. 2014;74:4731–4740. doi: 10.1158/0008-5472.CAN-14-0747.
    1. Gabai V.L., Yaglom J.A., Waldman T., Sherman M.Y. Heat shock protein Hsp72 controls oncogene-induced senescence pathways in cancer cells. Mol. Cell. Biol. 2009;29:559–569. doi: 10.1128/MCB.01041-08.
    1. Kirkegaard T., Roth A.G., Petersen N.H., Mahalka A.K., Olsen O.D., Moilanen I., Zylicz A., Knudsen J., Sandhoff K., Arenz C., et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature. 2010;463:549–553. doi: 10.1038/nature08710.
    1. Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. Int. J. Mol. Sci. 2018;19:2560. doi: 10.3390/ijms19092560.
    1. Dayal S., Sparks A., Jacob J., Allende-Vega N., Lane D.P., Saville M.K. Suppression of the deubiquitinating enzyme USP5 causes the accumulation of unanchored polyubiquitin and the activation of p53. J. Biol. Chem. 2009;284:5030–5041. doi: 10.1074/jbc.M805871200.
    1. Deng S., Wang J., Hou L., Li J., Chen G., Jing B., Zhang X., Yang Z. Annexin A1, A2, A4 and A5 play important roles in breast cancer, pancreatic cancer and laryngeal carcinoma, alone and/or synergistically. Oncol. Lett. 2013;5:107–112. doi: 10.3892/ol.2012.959.
    1. Von der Mark K., Mollenhauer J. Annexin V interactions with collagen. Cell. Mol. Life Sci. 1997;53:539–545. doi: 10.1007/s000180050069.
    1. Peng B., Guo C., Guan H., Liu S., Sun M.Z. Annexin A5 as a potential marker in tumors. Clin. Chim. Acta. 2014;427:42–48. doi: 10.1016/j.cca.2013.09.048.
    1. Okamoto O., Hozumi K., Katagiri F., Takahashi N., Sumiyoshi H., Matsuo N., Yoshioka H., Nomizu M., Fujiwara S. Dermatopontin promotes epidermal keratinocyte adhesion via alpha3beta1 integrin and a proteoglycan receptor. Biochemistry. 2010;49:147–155. doi: 10.1021/bi901066f.
    1. Yamatoji M., Kasamatsu A., Kouzu Y., Koike H., Sakamoto Y., Ogawara K., Shiiba M., Tanzawa H., Uzawa K. Dermatopontin: A potential predictor for metastasis of human oral cancer. Int. J. Cancer. 2012;130:2903–2911. doi: 10.1002/ijc.26328.
    1. Bays J.L., DeMali K.A. Vinculin in cell-cell and cell-matrix adhesions. Cell. Mol. Life Sci. 2017;74:2999–3009. doi: 10.1007/s00018-017-2511-3.
    1. Liu X.D., Morano K.A., Thiele D.J. The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone. J. Biol. Chem. 1999;274:26654–26660. doi: 10.1074/jbc.274.38.26654.
    1. Michalak M., Groenendyk J., Szabo E., Gold L.I., Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 2009;417:651–666. doi: 10.1042/BJ20081847.
    1. Kennedy D., Jager R., Mosser D.D., Samali A. Regulation of apoptosis by heat shock proteins. IUBMB Life. 2014;66:327–338. doi: 10.1002/iub.1274.
    1. Dotto G.P. Multifocal epithelial tumors and field cancerization: Stroma as a primary determinant. J. Clin. Investig. 2014;124:1446–1453. doi: 10.1172/JCI72589.
    1. Nichols B.A., Oswald N.W., McMillan E.A., McGlynn K., Yan J., Kim M.S., Saha J., Mallipeddi P.L., LaDuke S.A., Villalobos P.A., et al. HORMAD1 Is a Negative Prognostic Indicator in Lung Adenocarcinoma and Specifies Resistance to Oxidative and Genotoxic Stress. Cancer Res. 2018;78:6196–6208. doi: 10.1158/0008-5472.CAN-18-1377.
    1. Sekito A., Koide-Yoshida S., Niki T., Taira T., Iguchi-Ariga S.M., Ariga H. DJ-1 interacts with HIPK1 and affects H2O2-induced cell death. Free Radic. Res. 2006;40:155–165. doi: 10.1080/10715760500456847.
    1. Clements C.M., McNally R.S., Conti B.J., Mak T.W., Ting J.P. DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. USA. 2006;103:15091–15096. doi: 10.1073/pnas.0607260103.
    1. Xiong H., Wang D., Chen L., Choo Y.S., Ma H., Tang C., Xia K., Jiang W., Ronai Z., Zhuang X., et al. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J. Clin. Investig. 2009;119:650–660. doi: 10.1172/JCI37617.
    1. Taira T., Saito Y., Niki T., Iguchi-Ariga S.M., Takahashi K., Ariga H. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 2004;5:213–218. doi: 10.1038/sj.embor.7400074.
    1. Van der Brug M.P., Blackinton J., Chandran J., Hao L.Y., Lal A., Mazan-Mamczarz K., Martindale J., Xie C., Ahmad R., Thomas K.J., et al. RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways. Proc. Natl. Acad. Sci. USA. 2008;105:10244–10249. doi: 10.1073/pnas.0708518105.
    1. Junn E., Jang W.H., Zhao X., Jeong B.S., Mouradian M.M. Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. J. Neurosci. Res. 2009;87:123–129. doi: 10.1002/jnr.21831.
    1. Rhee S.G., Kil I.S. Multiple Functions and Regulation of Mammalian Peroxiredoxins. Annu. Rev. Biochem. 2017;86:749–775. doi: 10.1146/annurev-biochem-060815-014431.
    1. Rhee S.G., Woo H.A., Kang D. The Role of Peroxiredoxins in the Transduction of H2O2 Signals. Antioxid. Redox Signal. 2018;28:537–557. doi: 10.1089/ars.2017.7167.
    1. Acs K., Luijsterburg M.S., Ackermann L., Salomons F.A., Hoppe T., Dantuma N.P. The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks. Nat. Struct. Mol. Biol. 2011;18:1345–1350. doi: 10.1038/nsmb.2188.
    1. Davis E.J., Lachaud C., Appleton P., Macartney T.J., Nathke I., Rouse J. DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage. Nat. Struct. Mol. Biol. 2012;19:1093–1100. doi: 10.1038/nsmb.2394.
    1. Masutani C., Sugasawa K., Yanagisawa J., Sonoyama T., Ui M., Enomoto T., Takio K., Tanaka K., van der Spek P.J., Bootsma D., et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 1994;13:1831–1843. doi: 10.1002/j.1460-2075.1994.tb06452.x.
    1. You X., Guo W., Wang L., Hou Y., Zhang H., Pan Y., Han R., Huang M., Liao L., Chen Y. Subcellular distribution of RAD23B controls XPC degradation and DNA damage repair in response to chemotherapy drugs. Cell. Signal. 2017;36:108–116. doi: 10.1016/j.cellsig.2017.04.023.
    1. Jia W., Yao Z., Zhao J., Guan Q., Gao L. New perspectives of physiological and pathological functions of nucleolin (NCL) Life Sci. 2017;186:1–10. doi: 10.1016/j.lfs.2017.07.025.
    1. Daniely Y., Borowiec J.A. Formation of a complex between nucleolin and replication protein A after cell stress prevents initiation of DNA replication. J. Cell Biol. 2000;149:799–810. doi: 10.1083/jcb.149.4.799.
    1. Bauer H.M., Ting Y., Greer C.E., Chambers J.C., Tashiro C.J., Chimera J., Reingold A., Manos M.M. Genital human papillomavirus infection in female university students as determined by a PCR-based method. JAMA. 1991;265:472–477. doi: 10.1001/jama.1991.03460040048027.
    1. Berkhout R.J., Tieben L.M., Smits H.L., Bavinck J.N., Vermeer B.J., ter Schegget J. Nested PCR approach for detection and typing of epidermodysplasia verruciformis-associated human papillomavirus types in cutaneous cancers from renal transplant recipients. J. Clin. Microbiol. 1995;33:690–695. doi: 10.1128/JCM.33.3.690-695.1995.
    1. Butterfield D.A., Gu L., Di Domenico F., Robinson R.A. Mass spectrometry and redox proteomics: Applications in disease. Mass Spectrom. Rev. 2014;33:277–301. doi: 10.1002/mas.21374.
    1. Di Domenico F., Pupo G., Giraldo E., Badia M.C., Monllor P., Lloret A., Schinina M.E., Giorgi A., Cini C., Tramutola A., et al. Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease patients. Free Radic. Biol. Med. 2016;91:1–9. doi: 10.1016/j.freeradbiomed.2015.12.004.

Source: PubMed

3
Subscribe