Sarcopenia is Associated with Malnutrition but Not with Systemic Inflammation in Older Persons with Advanced CKD

Simone Vettoretti, Lara Caldiroli, Silvia Armelloni, Camilla Ferrari, Matteo Cesari, Piergiorgio Messa, Simone Vettoretti, Lara Caldiroli, Silvia Armelloni, Camilla Ferrari, Matteo Cesari, Piergiorgio Messa

Abstract

Background: In patients with chronic kidney disease (CKD), sarcopenia can be determined by a wide spectrum of risk factors. We evaluated the association of sarcopenia with nutritional, behavioral and inflammatory patterns in older patients with advanced CKD.

Methods: we cross-sectionally evaluated 113 patients with CKD stages 3b-5. Sarcopenia was defined according to the EWGSOP2 criteria. We assessed: anthropometry, bioelectrical impedance analysis, physical, and psychological performance. Nutritional status was assessed using the Malnutrition Inflammation Score (MIS) and by verifying the eventual presence Protein Energy Wasting syndrome (PEW). Systemic inflammation was assessed by dosing: CRP, IL6, TNFα, MCP1, IL10, IL17, fetuin, IL12.

Results: 24% of patients were sarcopenic. Sarcopenic individuals had lower creatinine clearance (18 ± 11 vs. 23 ± 19 mL/min; p = 0.0087) as well as lower BMI (24.8 ± 3.0 vs. 28.4 ± 5.5 Kg/m2; p < 0.0001) and a lower FTI (11.6 ± 3.9 vs. 14.4 ± 5.1 kg/m2, p = 0.023). Sarcopenic persons had higher prevalence of PEW (52 vs. 20%, p < 0.0001) and a tendency to have higher MIS (6.6 ± 6.5 vs. 4.5 ± 4.0, p = 0.09); however, they did not show any difference in systemic inflammation compared to non-sarcopenic individuals.

Conclusions: CKD sarcopenic patients were more malnourished than non-sarcopenic ones, but the two groups did not show any difference in systemic inflammation.

Keywords: chronic kidney disease; inflammation; malnutrition; physical performance; sarcopenia.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Walston J.D. Sarcopenia in older adults. Curr. Opin. Rheumatol. 2012;24:623–627. doi: 10.1097/BOR.0b013e328358d59b.
    1. Moorthi R.N., Avin K.G. Clinical relevance of sarcopenia in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2017;26:219–228. doi: 10.1097/MNH.0000000000000318.
    1. Bonanni A., Mannucci I., Verzola D., Antonella S., Stefano S., Ezio G., Giacomo G. Protein-energy wasting and mortality in chronic kidney disease. Int. J. Environ. Res. Public Health. 2011;8:1631–1654. doi: 10.3390/ijerph8051631.
    1. Pereira R.A., Cordeiro A.C., Avesani C.M., Carrero J.J., Lindholm B., Amparo F.C., Amodeo C., Cuppari L., Kamimura M.A. Sarcopenia in chronic kidney disease on conservative therapy: Prevalence and association with mortality. Nephrol. Dial. Transplant. 2015;30:1718–1725. doi: 10.1093/ndt/gfv133.
    1. De Souza V.A., Oliveira D., Barbosa S.R., do Amaral Corrêa J.O., Colugnati F.A.B., Mansur H.N., da Silva Fernandes M.N., Bastos M.G. Sarcopenia in patients with chronic kidney disease not yet on dialysis: Analysis of the prevalence and associated factors. PLoS ONE. 2017;12:e0176230. doi: 10.1371/journal.pone.0176230.
    1. Stangl M.K., Böcker W., Chubanov V., Ferrari U., Fischereder M., Gudermann T., Hesse E., Meinke P., Reincke M., Reisch N., et al. Sarcopenia—Endocrinological and neurological aspects. Exp. Clin. Endocrinol. Diabetes. 2019;127:8–22. doi: 10.1055/a-0672-1007.
    1. Verzola D., Barisione C., Picciotto D., Garibotto G., Koppe L. Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney Int. 2019;95:506–517. doi: 10.1016/j.kint.2018.10.010.
    1. Fahal I.H. Uraemic sarcopenia: Aetiology and implications. Nephrol. Dial. Transplant. 2014;29:1655–1665. doi: 10.1093/ndt/gft070.
    1. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Bauer J.M., Boirie Y., Cederholm T., Landi F., Martin F.C., Michel J.P., Rolland Y., et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on sarcopenia in older people. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034.
    1. Janssen I., Heymsfield S.B., Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002;50:889–896. doi: 10.1046/j.1532-5415.2002.50216.x.
    1. Metter E.J., Talbot L.A., Schrager M., Conwit R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J. Gerontol. A Biol. Sci. Med. Sci. 2002;57:B359–B365. doi: 10.1093/gerona/57.10.B359.
    1. Lino V.T.S., Rodrigues N.C.P., O’Dwyer G., de Andrade M.K.N., Mattos I.E., Portela M.C. Handgrip strength and factors associated in poor elderly assisted at a primary care unit in Rio de Janeiro, Brazil. PLoS ONE. 2016;11:e0166373. doi: 10.1371/journal.pone.0166373.
    1. Lai S., Muscaritoli M., Andreozzi P., Sgreccia A., De Leo S., Mazzaferro S., Mitterhofer A., Pasquali M., Protopapa P., Spagnoli A., et al. Sarcopenia and cardiovascular risk indices in patients with chronic kidney disease on conservative and replacement therapy. Nutrition. 2019;62:108–114. doi: 10.1016/j.nut.2018.12.005.
    1. Chang Y.-T., Wu H.-L., Guo H.-R., Tseng C., Wang M., Lin C., Sung J. Handgrip strength is an independent predictor of renal outcomes in patients with chronic kidney diseases. Nephrol. Dial. Transplant. 2011;26:3588–3595. doi: 10.1093/ndt/gfr013.
    1. Florkowski C.M., Chew-Harris J.S. Methods of estimating GFR—Different equations including CKD-EPI. Clin. Biochem. Rev. 2011;32:75–79.
    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère T., Cooper C., Landi F., Rolland Y., Sayer A., et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169.
    1. Maroni B.J., Steinman T.I., Mitch W.E. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 1985;27:58–65. doi: 10.1038/ki.1985.10.
    1. Fouque D., Kalantar-Zadeh K., Kopple J., Cano N., Chauveau P., Cuppari L., Franch H., Guarnieri G., Ikizler T., Kaysen G., et al. A proposed nomenclature and diagnostic criteria for protein–energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73:391–398. doi: 10.1038/sj.ki.5002585.
    1. Yasui S., Shirai Y., Tanimura M., Matsuura S., Saito Y., Miyata K., Ishikawa E., Miki C., Hamada Y., et al. Prevalence of protein-energy wasting (PEW) and evaluation of diagnostic criteria in Japanese maintenance hemodialysis patients. Asia Pac. J. Clin. Nutr. 2016;25:292–299. doi: 10.1016/S0261-5614(14)50443-8.
    1. Kalantar-Zadeh K., Kopple J.D., Block G., Humphreys M.H. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 2001;38:1251–1263. doi: 10.1053/ajkd.2001.29222.
    1. Afşar B., Sezer S., Ozdemir F.N., Celik H., Elsurer R., Haberal M. Malnutrition-inflammation score is a useful tool in peritoneal dialysis patients. Perit. Dial. Int. 2006;26:705–711.
    1. Guralnik J.M., Ferrucci L., Simonsick E.M., Salive M.E., Wallace R.B. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995;332:556–561. doi: 10.1056/NEJM199503023320902.
    1. Guralnik J.M., Winograd C.H. Physical performance measures in the assessment of older persons. Aging. 1994;6:303–305. doi: 10.1007/BF03324256.
    1. Lawton M.P., Brody E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9:179–186. doi: 10.1093/geront/9.3_Part_1.179.
    1. Jekel K., Damian M., Wattmo C., Hausner L., Bullock R., Connelly P., Dubois B., Eriksdotter M., Ewers M., Graessel E., et al. Mild cognitive impairment and deficits in instrumental activities of daily living: A systematic review. Alzheimers Res. Ther. 2015;7:17. doi: 10.1186/s13195-015-0099-0.
    1. Parmelee P.A., Katz I.R., Lawton M.P. Depression among institutionalized aged: Assessment and prevalence estimation. J. Gerontol. 1989;44:M22–M29. doi: 10.1093/geronj/44.1.M22.
    1. Cruz-Jentoft A.J., Landi F., Schneider S.M., Zúñiga C., Arai H., Boirie Y., Chen L., Fielding R., Martin F., Michel J., et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS) Age Ageing. 2014;43:748–759. doi: 10.1093/ageing/afu115.
    1. Shahar D.R., Yu B., Houston D.K., Kritchevsky S., Newman A., Sellmeyer D., Tylavsky F., Lee J., Harris T. Health, Aging, and Body Composition Study. Misreporting of energy intake in the elderly using doubly labeled water to measure total energy expenditure and weight change. J. Am. Coll Nutr. 2010;29:14–24. doi: 10.1080/07315724.2010.10719812.
    1. Hirai K., Ookawara S., Morishita Y. Sarcopenia and physical inactivity in patients with chronic kidney disease. Nephrourol. Mon. 2016;8:e37443. doi: 10.5812/numonthly.37443.
    1. Landi F., Liperoti R., Russo A., Landi F., Liperoti R., Russo A., Giovannini S., Tosato M., Capoluongo E., Bernabei R., et al. Sarcopenia as a risk factor for falls in elderly individuals: Results from the ilsirente study. Clin. Nutr. 2012;31:652–658. doi: 10.1016/j.clnu.2012.02.007.
    1. Lee J.S.W., Auyeung T.-W., Kwok T., Lau E.M.C., Leung P.-C., Woo J. Associated factors and health impact of sarcopenia in older Chinese men and women: A cross-sectional study. Gerontology. 2007;53:404–410. doi: 10.1159/000107355.
    1. Abellan van Kan G. Epidemiology and consequences of sarcopenia. J. Nutr. Health Aging. 2009;13:708–712. doi: 10.1007/s12603-009-0201-z.
    1. Ershler W.B., Keller E.T. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Ann. Rev. Med. 2000;51:245–270. doi: 10.1146/annurev.med.51.1.245.
    1. Roubenoff R., Parise H., Payette H.A., Abad L.W., D’Agostino R., Jacques P.F., Wilson P.W., Dinarello C.A., Harris T.B. Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: The framingham heart study. Am. J. Med. 2003;115:429–435. doi: 10.1016/j.amjmed.2003.05.001.
    1. Bian A.-L., Hu H.-Y., Rong Y.-D., Wang J., Wang J.-X., Zhou X.-Z. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. Eur. J. Med. Res. 2017;22:25. doi: 10.1186/s40001-017-0266-9.
    1. Honda H., Qureshi A.R., Axelsson J., Heimburger O., Suliman E.M., Barany P., Stenvinkel P., Lindholm B. Obese sarcopenia in patients with end-stage renal disease is associated with inflammation and increased mortality. Am. J. Clin. Nutr. 2007;86:633–638. doi: 10.1093/ajcn/86.3.633.
    1. Cesari M., Kritchevsky S.B., Baumgartner R.N., Atkinson H.H., Penninx B.W., Lenchik L., Palla S.L., Ambrosius W.T., Tracy R.P., Pahor M. Sarcopenia, obesity, and inflammation—Results from the trial of angiotensin converting enzyme inhibition and novel cardiovascular risk factors study. Am. J. Clin. Nutr. 2005;82:428–434. doi: 10.1093/ajcn/82.2.428.
    1. Kim J.-K., Choi S.R., Choi M.J., Kim S.G., Lee Y.K., Noh J.W., Kim H.J., Song Y.R. Prevalence of and factors associated with sarcopenia in elderly patients with end-stage renal disease. Clin. Nutr. 2014;33:64–68. doi: 10.1016/j.clnu.2013.04.002.
    1. Verzola D., Bonanni A., Sofia A., Montecucco F., D’Amato E., Cademartori V., Parodi E.L., Viazzi F., Venturelli C., Brunori G., et al. Toll-like receptor 4 signalling mediates inflammation in skeletal muscle of patients with chronic kidney disease. J. Cachexia Sarcopenia Muscle. 2017;8:131–144. doi: 10.1002/jcsm.12129.

Source: PubMed

3
Subscribe