Predictors of Submaximal Exercise Test Attainment in Adults Reporting Long COVID Symptoms

Roman Romero-Ortuno, Glenn Jennings, Feng Xue, Eoin Duggan, John Gormley, Ann Monaghan, Roman Romero-Ortuno, Glenn Jennings, Feng Xue, Eoin Duggan, John Gormley, Ann Monaghan

Abstract

Adults with long COVID often report intolerance to exercise. Cardiopulmonary exercise testing (CPET) has been used in many settings to measure exercise ability but has been conducted in a few long COVID cohorts. We conducted CPET in a sample of adults reporting long COVID symptoms using a submaximal cycle ergometer protocol. We studied pre-exercise predictors of achieving 85% of the age-predicted maximum heart rate (85%HRmax) using logistic regression. Eighty participants were included (mean age 46 years, range 25−78, 71% women). Forty participants (50%) did not reach 85%HRmax. On average, non-achievers reached 84% of their predicted 85%HRmax. No adverse events occurred. Participants who did not achieve 85%HRmax were older (p < 0.001), had more recent COVID-19 illness (p = 0.012) with higher frequency of hospitalization (p = 0.025), and had been more affected by dizziness (p = 0.041) and joint pain (p = 0.028). In the logistic regression model including age, body mass index, time since COVID-19, COVID-19-related hospitalization, dizziness, joint pain, pre-existing cardiopulmonary disease, and use of beta blockers, independent predictors of achieving 85%HRmax were younger age (p = 0.001) and longer time since COVID-19 (p = 0.008). Our cross-sectional findings suggest that exercise tolerance in adults with long COVID has potential to improve over time. Longitudinal research should assess the extent to which this may occur and its mechanisms. ClinicalTrials.gov identifier: NCT05027724 (TROPIC Study).

Keywords: cardiopulmonary exercise test; exercise tolerance; heart rate; long COVID; observational study.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Mean in-exercise Borg values for achievers and non-achievers.
Figure 2
Figure 2
Mean in-exercise SpO2% values for achievers and non-achievers.
Figure 3
Figure 3
Mean revolutions per minute (rpm) values for achievers and non-achievers.

References

    1. Cucinotta D., Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020;91:157–160.
    1. WHO WHO Coronavirus (COVID-19) Dashboard. [(accessed on 5 February 2022)]; Available online:
    1. WHO A Clinical Case Definition of Post COVID-19 Condition by a Delphi Consensus, 6 October 2021. [(accessed on 5 February 2022)]; Available online: .
    1. Taquet M., Dercon Q., Luciano S., Geddes J.R., Husain M., Harrison P.J. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 2021;18:e1003773. doi: 10.1371/journal.pmed.1003773.
    1. Jennings G., Monaghan A., Xue F., Mockler D., Romero-Ortuno R. A Systematic Review of Persistent Symptoms and Residual Abnormal Functioning following Acute COVID-19: Ongoing Symptomatic Phase vs. Post-COVID-19 Syndrome. J. Clin. Med. 2021;10:5913. doi: 10.3390/jcm10245913.
    1. Lopez-Leon S., Wegman-Ostrosky T., Perelman C., Sepulveda R., Rebolledo P.A., Cuapio A., Villapol S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021;11:16144. doi: 10.1038/s41598-021-95565-8.
    1. Fernandez-de-Las-Penas C., Palacios-Cena D., Gomez-Mayordomo V., Palacios-Cena M., Rodriguez-Jimenez J., de-la-Llave-Rincon A.I., Velasco-Arribas M., Fuensalida-Novo S., Ambite-Quesada S., Guijarro C., et al. Fatigue and Dyspnoea as Main Persistent Post-COVID-19 Symptoms in Previously Hospitalized Patients: Related Functional Limitations and Disability. Respiration. 2022;101:132–141. doi: 10.1159/000518854.
    1. Tleyjeh I.M., Saddik B., Ramakrishnan R.K., AlSwaidan N., AlAnazi A., Alhazmi D., Aloufi A., AlSumait F., Berbari E.F., Halwani R. Long term predictors of breathlessness, exercise intolerance, chronic fatigue and well-being in hospitalized patients with COVID-19: A cohort study with 4 months median follow-up. J. Infect. Public Health. 2022;15:21–28. doi: 10.1016/j.jiph.2021.11.016.
    1. Jahn K., Sava M., Sommer G., Schumann D.M., Bassetti S., Siegemund M., Battegay M., Stolz D., Tamm M., Khanna N., et al. Exercise capacity impairment after COVID-19 pneumonia is mainly caused by deconditioning. Eur. Respir. J. 2022;59:2101136. doi: 10.1183/13993003.01136-2021.
    1. Rinaldo R.F., Mondoni M., Parazzini E.M., Pitari F., Brambilla E., Luraschi S., Balbi M., Sferrazza Papa G.F., Sotgiu G., Guazzi M., et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur. Respir. J. 2021;58:2100870. doi: 10.1183/13993003.00870-2021.
    1. Clavario P., De Marzo V., Lotti R., Barbara C., Porcile A., Russo C., Beccaria F., Bonavia M., Bottaro L.C., Caltabellotta M., et al. Assessment of functional capacity with cardiopulmonary exercise testing in non-severe COVID-19 patients at three months follow-up. medRxiv. 2020 medRxiv:2020.11.15.20231985.
    1. Ferreira E.V.M., Oliveira R.K.F. Mechanisms of exercise intolerance after COVID-19: New perspectives beyond physical deconditioning. J. Bras. Pneumol. 2021;47:e20210406.
    1. Albouaini K., Egred M., Alahmar A., Wright D.J. Cardiopulmonary exercise testing and its application. Heart. 2007;93:1285–1292. doi: 10.1136/hrt.2007.121558.
    1. Glaab T., Taube C. Practical guide to cardiopulmonary exercise testing in adults. Respir. Res. 2022;23:9. doi: 10.1186/s12931-021-01895-6.
    1. Gibbons R.J., Balady G.J., Bricker J.T., Chaitman B.R., Fletcher G.F., Froelicher V.F., Mark D.B., McCallister B.D., Mooss A.N., O’Reilly M.G., et al. ACC/AHA 2002 guideline update for exercise testing: Summary article: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines) Circulation. 2002;106:1883–1892.
    1. Brubaker P.H., Kitzman D.W. Chronotropic incompetence: Causes, consequences, and management. Circulation. 2011;123:1010–1020. doi: 10.1161/CIRCULATIONAHA.110.940577.
    1. Naeije R., Caravita S. CPET for Long COVID-19. JACC Heart Fail. 2022;10:214–215. doi: 10.1016/j.jchf.2022.01.008.
    1. Liguori G., ACSM . ACSM’s Guidelines for Exercise Testing and Prescription. 11th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2020.
    1. Thompson P.D., Arena R., Riebe D., Pescatello L.S., American College of Sports Medicine ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription, ninth edition. Curr. Sports Med. Rep. 2013;12:215–217. doi: 10.1249/JSR.0b013e31829a68cf.
    1. Monaghan A., Jennings G., Xue F., Byrne L., Duggan E., Romero-Ortuno R. Orthostatic Intolerance in Adults Reporting Long COVID Symptoms Was Not Associated with Postural Orthostatic Tachycardia Syndrome. Front. Physiol. 2022;13:833650. doi: 10.3389/fphys.2022.833650.
    1. Cella M., Chalder T. Measuring fatigue in clinical and community settings. J. Psychosom. Res. 2010;69:17–22. doi: 10.1016/j.jpsychores.2009.10.007.
    1. Mihalick V.L., Canada J.M., Arena R., Abbate A., Kirkman D.L. Cardiopulmonary exercise testing during the COVID-19 pandemic. Prog. Cardiovasc. Dis. 2021;67:35–39. doi: 10.1016/j.pcad.2021.04.005.
    1. Tanaka H., Monahan K.D., Seals D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001;37:153–156. doi: 10.1016/S0735-1097(00)01054-8.
    1. Burdon J.G., Juniper E.F., Killian K.J., Hargreave F.E., Campbell E.J. The perception of breathlessness in asthma. Am. Rev. Respir. Dis. 1982;126:825–828.
    1. Weatherald J., Philipenko B., Montani D., Laveneziana P. Ventilatory efficiency in pulmonary vascular diseases. Eur. Respir. Rev. 2021;30:200214. doi: 10.1183/16000617.0214-2020.
    1. Crisafulli E., Dorelli G., Sartori G., Dalle Carbonare L. Exercise ventilatory inefficiency may be a relevant CPET-feature in COVID-19 survivors. Int. J. Cardiol. 2021;343:200. doi: 10.1016/j.ijcard.2021.09.026.
    1. NICE, COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19 NICE Guideline [NG188] [(accessed on 18 April 2022)]. Available online: .
    1. Palmer S., Cunniffe N., Donnelly R. COVID-19 hospitalization rates rise exponentially with age, inversely proportional to thymic T-cell production. J. R. Soc. Interface. 2021;18:20200982. doi: 10.1098/rsif.2020.0982.
    1. Cheval B., Sieber S., Maltagliati S., Millet G.P., Formanek T., Chalabaev A., Cullati S., Boisgontier M.P. Muscle strength is associated with COVID-19 hospitalization in adults 50 years of age or older. J. Cachexia Sarcopenia Muscle. 2021;12:1136–1143. doi: 10.1002/jcsm.12738.
    1. Mohamed Hussein A.A., Saad M., Zayan H.E., Abdelsayed M., Moustafa M., Ezzat A.R., Helmy R., Abd-Elaal H., Aly K., Abdelrheem S., et al. Post-COVID-19 functional status: Relation to age, smoking, hospitalization, and previous comorbidities. Ann. Thorac. Med. 2021;16:260–265. doi: 10.4103/atm.atm_606_20.
    1. Vonbank K., Lehmann A., Bernitzky D., Gysan M.R., Simon S., Schrott A., Burtscher M., Idzko M., Gompelmann D. Predictors of Prolonged Cardiopulmonary Exercise Impairment After COVID-19 Infection: A Prospective Observational Study. Front. Med. 2021;8:773788. doi: 10.3389/fmed.2021.773788.
    1. Barbagelata L., Masson W., Iglesias D., Lillo E., Migone J.F., Orazi M.L., Maritano Furcada J. Cardiopulmonary Exercise Testing in Patients with Post-COVID-19 Syndrome. Med. Clin. 2021 doi: 10.1016/j.medcli.2021.07.007.
    1. Aparisi A., Ybarra-Falcon C., Garcia-Gomez M., Tobar J., Iglesias-Echeverria C., Jaurrieta-Largo S., Ladron R., Uribarri A., Catala P., Hinojosa W., et al. Exercise Ventilatory Inefficiency in Post-COVID-19 Syndrome: Insights from a Prospective Evaluation. J. Clin. Med. 2021;10:2591. doi: 10.3390/jcm10122591.
    1. Mohr A., Dannerbeck L., Lange T.J., Pfeifer M., Blaas S., Salzberger B., Hitzenbichler F., Koch M. Cardiopulmonary exercise pattern in patients with persistent dyspnoea after recovery from COVID-19. Multidiscip. Respir. Med. 2021;16:732. doi: 10.4081/mrm.2021.732.
    1. Ladlow P., O’Sullivan O., Houston A., Barker-Davies R., May S., Mills D., Dewson D., Chamley R., Naylor J., Mulae J., et al. Dysautonomia following COVID-19 is not associated with subjective limitations or symptoms but is associated with objective functional limitations. Heart Rhythm. 2021;19:613–620. doi: 10.1016/j.hrthm.2021.12.005.
    1. Maiese A., Passaro G., Matteis A., Fazio V., Raffaele R., Paolo M.D. Thromboinflammatory response in SARS-CoV-2 sepsis. Med. Leg. J. 2020;88:78–80. doi: 10.1177/0025817220926915.
    1. Zanza C., Romenskaya T., Manetti A.C., Franceschi F., La Russa R., Bertozzi G., Maiese A., Savioli G., Volonnino G., Longhitano Y. Cytokine Storm in COVID-19: Immunopathogenesis and Therapy. Medicina. 2022;58:144. doi: 10.3390/medicina58020144.
    1. Raman B., Cassar M.P., Tunnicliffe E.M., Filippini N., Griffanti L., Alfaro-Almagro F., Okell T., Sheerin F., Xie C., Mahmod M., et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine. 2021;31:100683. doi: 10.1016/j.eclinm.2020.100683.
    1. Taboada M., Moreno E., Carinena A., Rey T., Pita-Romero R., Leal S., Sanduende Y., Rodriguez A., Nieto C., Vilas E., et al. Quality of life, functional status, and persistent symptoms after intensive care of COVID-19 patients. Br. J. Anaesth. 2021;126:e110–e113. doi: 10.1016/j.bja.2020.12.007.
    1. Maglietta G., Diodati F., Puntoni M., Lazzarelli S., Marcomini B., Patrizi L., Caminiti C. Prognostic Factors for Post-COVID-19 Syndrome: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022;11:1541. doi: 10.3390/jcm11061541.
    1. Johnsen S., Sattler S.M., Miskowiak K.W., Kunalan K., Victor A., Pedersen L., Andreassen H.F., Jorgensen B.J., Heeboll H., Andersen M.B., et al. Descriptive analysis of long COVID sequelae identified in a multidisciplinary clinic serving hospitalised and non-hospitalised patients. ERJ Open Res. 2021;7:00205-2021. doi: 10.1183/23120541.00205-2021.
    1. Debeaumont D., Boujibar F., Ferrand-Devouge E., Artaud-Macari E., Tamion F., Gravier F.E., Smondack P., Cuvelier A., Muir J.F., Alexandre K., et al. Cardiopulmonary Exercise Testing to Assess Persistent Symptoms at 6 Months in People With COVID-19 Who Survived Hospitalization: A Pilot Study. Phys. Ther. 2021;101:pzab099. doi: 10.1093/ptj/pzab099.
    1. Blokland I.J., Ilbrink S., Houdijk H., Dijkstra J.W., van Bennekom C.A.M., Fickert R., de Lijster R., Groot F.P. Exercise capacity after mechanical ventilation because of COVID-19: Cardiopulmonary exercise tests in clinical rehabilitation. Ned. Tijdschr. Geneeskd. 2020;164:D5253.
    1. Cassar M.P., Tunnicliffe E.M., Petousi N., Lewandowski A.J., Xie C., Mahmod M., Samat A.H.A., Evans R.A., Brightling C.E., Ho L.P., et al. Symptom Persistence Despite Improvement in Cardiopulmonary Health—Insights from longitudinal CMR, CPET and lung function testing post-COVID-19. EClinicalMedicine. 2021;41:101159. doi: 10.1016/j.eclinm.2021.101159.
    1. Alba G.A., Ziehr D.R., Rouvina J.N., Hariri L.P., Knipe R.S., Medoff B.D., Hibbert K.A., Kowal A., Hoenstine C., Ginns L.C., et al. Exercise performance in patients with post-acute sequelae of SARS-CoV-2 infection compared to patients with unexplained dyspnea. EClinicalMedicine. 2021;39:101066. doi: 10.1016/j.eclinm.2021.101066.
    1. Rinaldo R.F., Mondoni M., Parazzini E.M., Baccelli A., Pitari F., Brambilla E., Luraschi S., Balbi M., Guazzi M., Di Marco F., et al. Severity does not impact on exercise capacity in COVID-19 survivors. Respir. Med. 2021;187:106577. doi: 10.1016/j.rmed.2021.106577.
    1. Csulak E., Petrov A., Kovats T., Tokodi M., Lakatos B., Kovacs A., Staub L., Suhai F.I., Szabo E.L., Dohy Z., et al. The Impact of COVID-19 on the Preparation for the Tokyo Olympics: A Comprehensive Performance Assessment of Top Swimmers. Int. J. Environ. Res. Public Health. 2021;18:9770. doi: 10.3390/ijerph18189770.
    1. Cavigli L., Frascaro F., Turchini F., Mochi N., Sarto P., Bianchi S., Parri A., Carraro N., Valente S., Focardi M., et al. A prospective study on the consequences of SARS-CoV-2 infection on the heart of young adult competitive athletes: Implications for a safe return-to-play. Int. J. Cardiol. 2021;336:130–136. doi: 10.1016/j.ijcard.2021.05.042.
    1. Komici K., Bianco A., Perrotta F., Dello Iacono A., Bencivenga L., D’Agnano V., Rocca A., Bianco A., Rengo G., Guerra G. Clinical Characteristics, Exercise Capacity and Pulmonary Function in Post-COVID-19 Competitive Athletes. J. Clin. Med. 2021;10:3053. doi: 10.3390/jcm10143053.
    1. Anastasio F., La Macchia T., Rossi G., D’Abbondanza M., Curcio R., Vaudo G., Pucci G. Mid-term impact of mild-moderate COVID-19 on cardiorespiratory fitness in elite athletes. J. Sports Med. Phys. Fitness. 2021 doi: 10.23736/S0022-4707.21.13226-8.
    1. Clavario P., De Marzo V., Lotti R., Barbara C., Porcile A., Russo C., Beccaria F., Bonavia M., Bottaro L.C., Caltabellotta M., et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int. J. Cardiol. 2021;340:113–118. doi: 10.1016/j.ijcard.2021.07.033.
    1. Mancini D.M., Brunjes D.L., Lala A., Trivieri M.G., Contreras J.P., Natelson B.H. Use of Cardiopulmonary Stress Testing for Patients With Unexplained Dyspnea Post-Coronavirus Disease. JACC Heart Fail. 2021;9:927–937. doi: 10.1016/j.jchf.2021.10.002.
    1. Singh I., Joseph P., Heerdt P.M., Cullinan M., Lutchmansingh D.D., Gulati M., Possick J.D., Systrom D.M., Waxman A.B. Persistent Exertional Intolerance After COVID-19: Insights From Invasive Cardiopulmonary Exercise Testing. Chest. 2022;161:54–63. doi: 10.1016/j.chest.2021.08.010.
    1. Motiejunaite J., Balagny P., Arnoult F., Mangin L., Bancal C., d’Ortho M.P., Frija-Masson J. Hyperventilation: A Possible Explanation for Long-Lasting Exercise Intolerance in Mild COVID-19 Survivors? Front. Physiol. 2020;11:614590. doi: 10.3389/fphys.2020.614590.
    1. Driver S., Reynolds M., Brown K., Vingren J.L., Hill D.W., Bennett M., Gilliland T., McShan E., Callender L., Reynolds E., et al. Effects of wearing a cloth face mask on performance, physiological and perceptual responses during a graded treadmill running exercise test. Br. J. Sports Med. 2022;56:107–113. doi: 10.1136/bjsports-2020-103758.
    1. Kersten J., Baumhardt M., Hartveg P., Hoyo L., Hull E., Imhof A., Kropf-Sanchen C., Nita N., Morike J., Rattka M., et al. Long COVID: Distinction between Organ Damage and Deconditioning. J. Clin. Med. 2021;10:3782. doi: 10.3390/jcm10173782.

Source: PubMed

3
Subscribe